Introduction to Mathematical Finance Exercise sheet 9

Exercise 9.1 Let $(Y_t)_{0 \le t \le T}$ be a given integrable adapted discrete-time process. Define an adapted process $(U_t)_{0 \le t \le T}$ by the recursion

$$U_T = Y_T$$

$$U_t = \max(Y_t, E[U_{t+1}|\mathcal{F}_t]) \quad \text{for } 0 \le t \le T - 1$$

The process $(U_t)_{0 \le t \le T}$ is called the Snell envelope of $(Y_t)_{0 \le t \le T}$. For simplicity, we suppose in this exercise that \mathcal{F}_0 is the trivial σ -algebra.

- (a) Show that the Snell envelope of a process is the smallest supermartingale dominating that process.
- (b) Show that if Y is a supermartingale then $U_t = Y_t$ for all t, and if Y is submartingale, then $U_t = E[Y_T | \mathcal{F}_t]$.
- (c) Let τ be any stopping time taking values in $\{0, ..., T\}$. Show that the process $(U_{t\wedge\tau})_{0\leq t\leq T}$ is a supermartingale.

Define the random time τ^* by

$$\tau^* = \min\{t \in \{0, ..., T\} \text{ such that } U_t = Y_t\}$$

- (d) Show that τ^* is a stopping time. Furthermore, show that the process $(U_{t \wedge \tau^*})_{0 \leq t \leq T}$ is a martingale and, in particular, $U_0 = E[Y_{\tau^*}]$
- (e) Show that $U_0 = \sup\{E[Y_\tau] : \text{stopping times } 0 \le \tau \le T\}$
- (f) Conclude that τ^* is an optimal stopping time, i.e. a solution to the problem of finding a stopping time $\tau \leq T$ that achieves the supremum in $\sup_{\tau \leq T} E[Y_{\tau}]$.
- (g) Give a financial example where this result could be used.

Exercise 9.2

(a) Let (Ω, \mathcal{F}, P) be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$ and $Y = (Y_k)_{k \in \mathbb{N}_0}$ a supermartingale with respect to P and \mathbb{F} . Show that Y can be uniquely decomposed as $Y = Y_0 + M - A$, where M is a martingale with $M_0 = 0$ and A is predictable and increasing (i.e., $A_k \leq A_{k+1} P$ -a.s. for all k) with $A_0 = 0$. This is the so-called *Doob decomposition* of Y.

Updated: May 5, 2020

(b) Now consider the trinomial market from Exercise 8.1 with T = 1 and define the process $U = (U_0, U_1)$ by $U_1 := H \in L^1_+(\mathcal{F}_1)$ and $U_0 :=$ superreplication price of H at time 0. Show that U is a Q-supermartingale for every $Q \in \mathbb{P}$, and find its Doob decomposition $U = U_0 + M^Q - A^Q$ for every $Q \in \mathbb{P}$.

Exercise 9.3 Let (S^0, S^1) be an *arbitrage-free* financial market with time horizon T and assume that the bank account process $S^0 = (S^0_k)_{k=0,1,\ldots,T}$ is given by $S^0_k = (1+r)^k$ for a constant $r \ge 0$. As usual, denote the set of all EMMs for S^1 with numeraire S_0 by $\mathbb{P}(S^0)$. Fix a K > 0. The undiscounted payoff of a *European call option* on S^1 with strike K and maturity $k \in \{1, \ldots, T\}$ is denoted by C^E_k and given by

$$C_k^E = \left(S_k^1 - K\right)^+,$$

whereas the undiscounted payoff of an Asian call option on S^1 with strike K and maturity $k \in \{1, \ldots, T\}$ is denoted by C_k^A and given by

$$C_k^A := \left(\frac{1}{k} \sum_{j=1}^k S_j^1 - K\right)^+.$$

- (a) Fix a $Q \in \mathbb{P}(S^0)$ and show that the function $\{1, \ldots, T\} \to \mathbb{R}_+, k \mapsto E_Q \left\lfloor \frac{C_k^E}{S_k^0} \right\rfloor$ is increasing. Hint: Use Jensen's inequality for conditional expectations.
- (b) Fix a $Q \in \mathbb{P}(S^0)$ and show that for all $k = 1, \ldots, T$, we have

$$E_Q\left[\frac{C_k^A}{S_k^0}\right] \le \frac{1}{k} \sum_{j=1}^k E_Q\left[\frac{C_j^E}{S_j^0}\right]$$

(c) Fix a $Q \in \mathbb{P}(S^0)$ and deduce that for all k = 1, ..., T, we have

$$E_Q\left[\frac{C_k^A}{S_k^0}\right] \le E_Q\left[\frac{C_k^E}{S_k^0}\right].$$

Interpret this inequality.