
This part was presented by Alessandro Pigati on March 19 and March 26, 2020, with

a small leftover on April 2. The notes are written by Alessandro Pigati. If you have any

question or find any mistake, please feel free to contact the author.

4. First variation of area and monotonicity. Regularity of almost flat

stationary sets: tilt-excess inequality

The presentation, which is essentially the same as in Maggi’s book [5] or in Allard’s

paper [1], follows quite closely the one in the notes [3] by Camillo De Lellis. This choice is

motivated by the fact that one of the next speakers will present the adaptations for general

stationary varifolds, which is the setting of [3]. The presentation given here contains a

few simplifications, due to the simpler setting where we are (reduced boundaries of finite

perimeter sets), and the extra addition of Corollary 4.10, which is not known in the general

situation of [3].

4.1. First variation of area and monotonicity.

Definition 4.1. Let Ω ⊆ Rn+1 be an open set and E ⊆ Ω a set of finite perimeter in Ω.

We say that E is a minimizer for the perimeter in Ω if its perimeter satisfies

Per(E,Ω) ≤ Per(E′,Ω)

whenever E′ is a set of finite perimeter (in Ω) with E∆E′ ⊂⊂ Ω.

Remark 4.2. The same definition applies if E is originally defined on a superset Ω′ ⊇ Ω,

in which case we ask that E ∩ Ω is a minimizer in Ω.

Definition 4.3. Let E be a set of finite perimeter (in Ω or in a bigger set). We say that

E is stationary for the perimeter if

d

dt
Per(Φt(E),Ω)|t=0 = 0

for all “perturbations of the identity” (Φt)t∈(−ε,ε) (ε arbitrary), namely maps Φt : Ω→ Ω

such that

• (t, x) 7→ Φt(x) is smooth on (−ε, ε)× Ω,

• Φt is a diffeomorphism for all t ∈ (−ε, ε),
• Φ0 = id,

• Φt(x) = x for all x ∈ Ω \K and all t, for a suitable compact set K ⊂ Ω.

We will see in a couple of talks that the above derivative always exists and equals

d

dt
Per(Φt(E),Ω)

∣∣∣
t=0

=

∫
∂∗E

divTy∂∗E S dHn(y),

where the vector field S is the speed of the deformation at t = 0, i.e., S(x) := d
dtΦt(x)

∣∣∣
t=0

,

and divTy∂∗E S is its divergence along the approximate tangent n-plane Ty∂
∗E, namely

divTy∂∗E S =

n∑
j=1

〈DS(y)[ξj ], ξj〉
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for an arbitrary orthonormal basis {ξj}n1 of Ty∂
∗E (the result is independent of the choice).

Given a vector field X ∈ C∞c (Ω,Rn+1), we can take Φt to be the flow of X at time t, in

which case S = X. We deduce that stationarity is equivalent to ask∫
∂∗E

divTy∂∗E X dHn(y) = 0

for all vector fields X ∈ C∞c (Ω,Rn+1).

Remark 4.4. A minimizer is stationary. Indeed, we can choose E′ := Φt(E) in the

definition of minimality and deduce Per(E,Ω) ≤ Per(Φt(E),Ω). Since equality holds for

t = 0, the function t 7→ Per(Φt(E),Ω) has a minimum for t = 0 and hence the derivative

vanishes there.

In the sequel, we will denote µ := Hn ∂∗E for convenience. Note that, in the previous

talk, µ was used instead to denote the vector-valued Gauss–Green measure of E. In the

present notation, the latter equals ν µ.

In the same forthcoming talk, we will also see that a clever choice of X will imply the

following formula, called monotonicity formula: for all balls Br(x) ⊆ Bs(x) ⊆ Ω∫
Bs(x)\Br(x)

|T⊥y ∂∗E(y)|2

|y|n+2
dµ(y) ≤ µ(Bs(x))

sn
− µ(Br(x))

rn
(1)

where T⊥y ∂
∗E denotes the line orthogonal to the approximate tangent n-plane Ty∂

∗E,

identified with the orthogonal projection map Rn+1 → T⊥y ∂
∗E (so that |T⊥y ∂∗E(y)|2 =

〈ν(y), y〉2). The name comes from the fact that it readily implies that the function

r 7→ µ(Br(x))

rn
, 0 < r < dist(x, ∂Ω),

is increasing. We deduce that the density

θ(x) := lim
r→0

µ(Br(x))

ωnrn

exists and is finite for all x ∈ Ω. The factor ωn normalizes this limit to be 1 when E is a

half-space and x belongs to its boundary, which is an n-plane. Note that, by the blow-up

analysis of the previous talk, we have θ(x) = 1 for all x ∈ ∂∗E.

It is also easy to see that θ is upper-semicontinuous, i.e., θ(x) ≥ lim supj→∞ θ(xj)

whenever xj → x (hint: use the inclusion Br(x) ⊇ Br−|xj−x|(xj) for any fixed r > 0). It

follows that

θ = 1 on ∂∗E, θ ≥ 1 on ∂∗E, θ = 0 on Ω \ ∂∗E,(2)

where ∂∗E is the relative closure of ∂∗E in Ω. The last assertion is immediate from the

fact that for x 6∈ ∂∗E we have ∂∗E ∩ Br(x) = ∅, for all radii r small enough, and thus

µ(Br(x)) = 0.

Remark 4.5. For a minimizer, the fact that µ(Br(x))
rn increases can be derived informally

as follows: first, note that

d

dr
Per(E,Br(x)) ≥ Per(E ∩ ∂Br(x)),



3

where the right-hand side is the ((n−1)-dimensional) perimeter of E∩∂Br(x) as a subset

of the sphere ∂Br(x), with equality achieved if ∂E meets ∂Br(x) orthogonally.

Defining E′ to equal E outside Br(x) and to equal the cone of E ∩ ∂Br(x) (with vertex

x) inside, we get

Per(E′,Ω) = Per(E,Ω)− Per(E,Br(x)) +
r

n
Per(E ∩ ∂Br(x)).

Using this E′ in the definition of minimality, we deduce

Per(E,Br(x)) ≤ r

n
Per(E ∩ ∂Br(x)) ≤ r

n

d

dr
Per(E,Br(x)),

which implies that r−n Per(E,Br(x)) has nonnegative derivative.

4.2. Regularity of almost flat stationary sets: strategy and statement. The goal

of these two talks is to show that if E∩Br(x) is approximately a half-space (meaning that

it is approximately {y ∈ Br(x) : 〈ν, y − x〉 > 0} for some unit vector ν) then E is smooth

on a smaller concentric ball.

This is similar to many results for nonlinear elliptic PDEs, where one assumes some

kind of “smallness” or “flatness” of the solution, in order to make the equation resemble a

linear one (the “first order expansion” of the original PDE) plus small higher order terms,

thus “taming” the nonlinearity, and one then proves that the solution is smooth on a

smaller ball, as it would happen for the linear (elliptic) PDE.

The strategy will be to show that the “flatness” of E on a ball Bs(y), i.e., its closeness

to a half-space, improves on a smaller ball in a quantitative way, namely it halves on a

ball Bηs(y). This is the bulk of the work and the proof consists of three steps:

• showing that most of ∂∗E ∩ Bs/100(y) is contained in the graph of a Lipschitz map

f : Rn → R with small Lipschitz constant, up to rotations;

• showing that f is close to being harmonic (on a ball) in a certain weak sense and

deducing that it is actually close to a harmonic function u in L2;

• exploiting the fact that harmonic functions do enjoy the desired “improvement of flat-

ness”; the technical difficulty is to transfer this from u to the original boundary ∂∗E.

The fact that f is approximately harmonic is expected, since its graph should be es-

sentially a critical point for the area and, if one expands the area functional for graphs,

the first term in the expansion is the Dirichlet energy
∫
|∇f |2, whose critical points are

harmonic functions.

One can measure flatness on a ball Br(x) with the L1-distance of 1∂∗E∩Br(x) from a

half-space, or by averaging the distance of the approximate tangent plane Ty∂
∗E from a

reference n-plane π. The second choice turns out to be much more convenient (although

one can show a posteriori that they both work).

Remark 4.6. There are simple examples showing that one cannot hope for regularity,

nor for improvement of flatness, just assuming flatness (in either version): see the picture

in the video. In these examples, the culprit is the fact that ∂∗E ∩ Br(x) has a much

bigger area than a hyperplane through x (in Br(x)), producing several layers which are

not individually boundaries of stationary sets.
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In view of this remark, we need two assumptions:

• closeness to a half-space, or more conveniently closeness of the approximate tangent

planes to a fixed n-plane in average,

• area µ(Br(x)) = Hn(∂∗E∩Br(x)) close to ωnr
n, the one we would have for a hyperplane.

Before giving precise statements, let us define a key quantity, which will make the first

assumption precise.

Definition 4.7. Given an n-plane π ⊂ Rn+1 through the origin, we define the excess of

E on Br(x), with respect to π, to be

Exc(E, π, x, r) := r−n
∫
Br(x)

‖Ty∂∗E − π‖2 dµ(y),

where we identify an n-plane with the orthogonal projection onto it, which is a linear map

Rn+1 → Rn+1, and we use the Hilbert–Schmidt norm for linear maps.

We will often write Exc(π, x, r) for simplicity. Note that this quantity is dimensionless,

i.e., invariant under dilations, in view of the factor r−n. Since we expect µ(Br(x)) to

behave like rn, at least when x ∈ ∂∗E, putting the factor r−n is informally like averaging

in the measure µ.

The main result is the following.

Theorem 4.8. Assume E is stationary in Br(x), with θ(x) ≥ 1. There exists a dimen-

sional constant ε(n) such that if

Exc(π, x, r) < ε, µ(Br(x)) < (ωn + ε)rn

then ∂∗E is a C1,γ embedded submanifold in Br/1000(x), for some γ = γ(n) ∈ (0, 1).

As we said, the bulk of the work lies in showing the improvement of flatness, namely

the following.

Theorem 4.9. Under the same assumption, for a possibly different ε(n), we have

Exc(π̃, x, ηr) ≤ 1

2
Exc(π, x, r)

for a new suitable plane π̃ (depending of course on all data) and a factor 0 < η < 1

depending only on n.

Note that the nature of Theorem 4.9 allows to iterate it infinitely many times, provided

we can apply it once: indeed, by monotonicity

µ(Bηr(x))

(ηr)n
≤ µ(Br(x))

rn
< ωn + ε

and Exc(π, x, ηr) < ε/2 < ε by the conclusion of the theorem, so we can apply Theorem 4.9

again on Bηr(x), and so on, finding planes relative to which the excess decays exponentially

on smaller and smaller balls.

In proving Theorem 4.8 we will apply Theorem 4.9 at all points in a small ball, rather

than just at x.

We record the following corollary of Theorem 4.8.
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Corollary 4.10. There exists a relatively closed set S ⊂ Ω, with Hn(S) = 0, such that

∂∗E is a smooth embedded n-submanifold on Ω \ S. In particular, Hn-a.e. point of ∂∗E

lies in this smooth manifold.

Proof. First of all, in view of (2), we have θ ≥ 1 on ∂∗E and hence

Hn(∂∗E \ ∂∗E) = 0.

This consequence can be proved using standard covering arguments: see, e.g., [2, Theo-

rem 2.56], which gives µ ≥ Hn ∂∗E and hence 0 = µ(∂∗E \ ∂∗E) ≥ Hn(∂∗E \ ∂∗E).

Now, given x ∈ ∂∗E, the assumptions of Theorem 4.8 apply for a suitably small r > 0

depending on x: indeed, the blow-up analysis of the previous talk (see Theorem 3.10 in

the notes) shows that µ(Br(x))
rn → ωn as r → 0, while, letting π = ν⊥ for some unit vector

ν and calling ν(y) the measure-theoretic outer unit normal,

lim
r→0

Exc(π, x, r) = lim
r→0

ωn
µ(Br(x))

∫
Br(x)

‖Ty∂∗E − π‖2 dµ(y)

= lim
r→0

ωn
µ(Br(x))

∫
Br(x)

2(1− 〈ν(y), ν〉2) dµ(y)

vanishes if we choose ν := ν(x) as in the definition of reduced boundary, since the last

integral is ≤ 4
∫
Br(x)(1 − 〈ν(y), ν〉) dµ(y) =

(
4 − 4 µE(Br(x))

|µE |(Br(x)) · ν(x)
)
µ(Br(x)) and this is

infinitesimal with respect to µ(Br(x)).1 The last equality above follows from the identity

‖Ty∂∗E − π‖ = ‖(id−π)− (id−Ty∂∗E)‖ = ‖π⊥ − T⊥y ∂∗E‖

and the fact that, writing π⊥ = ν ⊗ ν, T⊥y ∂
∗E = ν(y)⊗ ν(y), we have

‖ν ⊗ ν − ν(y)⊗ ν(y)‖2 = tr(ν ⊗ ν − ν(y)⊗ ν(y)) = 2− 2〈ν, ν(y)〉2.

So Theorem 4.8 gives that ∂∗E is a C1,γ submanifold near x. Calling S the complement

of the biggest open subset U ⊆ Ω where ∂∗E is a C1,γ submanifold, we get ∂∗E ⊆ U and,

trivially, Ω \ ∂∗E ⊆ U . So

S ⊆ ∂∗E \ ∂∗E

and we deduce Hn(S) = 0. To conclude, C1,γ can be upgraded to C∞ using standard

elliptic regularity, writing ∂∗E locally in U as a graph of a function: stationarity for

the area gives a certain nonlinear elliptic PDE which can be seen as linear with Hölder

coefficients, and Schauder theory gives that our function is C∞. We omit the details. �

4.3. Tilt-excess inequality. We now show an inequality which is analogous to Cacciop-

poli’s inequality for second order linear elliptic PDEs, both essentially giving a W 1,2-

control on a ball in terms of an L2-control on a bigger ball. Also the proof is substantially

the same. It will be needed only at the end of the proof of Theorem 4.9, but we present

it here in order to get acquainted with the stationarity condition.

1Here µE is the Gauss–Green measure of E, in the notation of the previous talk. Here and in the sequel

we keep denoting instead µ = Hn ∂∗E, so that µ = |µE |.
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Proposition 4.11 (tilt-excess inequality). If E is stationary on Br(x), then

Exc(π, x, r/2) ≤ C(n)r−n−2

∫
Br(x)

dist(y − x, π)2 dµ(y).

We call the quantity on the right-hand side the tilt of E on Br(x) with respect to

π. Note that both the excess and the tilt have a normalization which makes them scale

invariant (they are “dimensionless”).

Proof. By translation and dilation, we can assume x = 0, r = 1. Rotating the space, we

can also assume π = span{e1, . . . , en}.
Let ϕ be a cut-off function, namely we ask ϕ ∈ C∞c (B1) and ϕ = 1 on B1/2. Define the

vector fields Y (y) := yn+1en+1 and X(y) := ϕ2(y)Y (y).

Fixing y where Ty∂
∗E exists and calling {ξj}n1 an orthonormal basis of it, we compute

divTy∂∗E Y =
∑
j

(ξj)n+1〈en+1, ξj〉 =
∑
j

〈en+1, ξj〉2.(3)

Now

divTy∂∗E X = ϕ2(y) divTy∂∗E Y +
∑
j

〈∇(ϕ2), ξj〉yn+1〈en+1, ξj〉.

Since
∫
B1

divTy∂∗E X dµ(y) = 0 by stationarity, we deduce∫
B1

ϕ2(y) divTy∂∗E Y = −2

∫
B1

∑
j

ϕ(y)〈en+1, ξj〉yn+1〈∇ϕ, ξj〉.

Applying Young’s inequality 2ab ≤ a2

2 + 2b2 and recalling (3), we deduce∫
B1

ϕ2(y) divTy∂∗E Y ≤
1

2

∫
B1

ϕ2(y) divTy∂∗E Y + C(n)

∫
B1

y2
n+1 dµ(y),

which can be rewritten as∫
B1

ϕ2(y) divTy∂∗E Y ≤ C(n)

∫
B1

dist(y − x, π)2 dµ(y).

Finally, since π = id−π⊥ = id−en+1 ⊗ en+1 (and similarly for Ty∂
∗E with en+1 replaced

by ν(y)), we compute

‖π − Ty∂∗E‖2 = ‖en+1 ⊗ en+1 − ν(y)⊗ ν(y)‖2

= 2(1− 〈en+1, ν(y)〉2)

= 2
∑
j

〈en+1, ξj〉2

= 2 divTy∂∗E Y

where we used the identity ‖A‖2 = tr(A2) for symmetric matrices. Using the fact that

ϕ = 1 on B1/2, we deduce

Exc(π, 0, 1/2) ≤ 2n
∫
B1

ϕ2(y)‖π − Ty∂∗E‖2 dµ(y) ≤ C(n)

∫
B1

dist(y − x, π)2 dµ(y).
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For future use, we also record the inequality

JTy∂∗Eπ ≥ 1− C(n)‖π − Ty∂∗E‖2,(4)

where JTy∂∗Eπ is the Jacobian of the linear map π|Ty∂∗E . Indeed, this quantity equals the

square root of the determinant of A, where Aij = 〈π(ξi), π(ξj)〉. Writing π = id−en+1 ⊗
en+1, we find

Aij = δij − 〈en+1, ξi〉〈en+1, ξj〉

and the second term is bounded by
∑

j〈en+1, ξj〉2 = 1
2‖π−Ty∂

∗E‖2. Estimate (4) follows.

�

5. Regularity of almost flat stationary sets: Lipschitz and harmonic

approximation

5.1. Lipschitz approximation. In this section we implement the first step in our pro-

gram. The goal is the following proposition, whose statement is a bit technical.

Proposition 5.1 (Lipschitz approximation). Assume for simplicity x = 0 and fix param-

eters `, β ≥ 1. There exists a constant εL(`, β) such that, if E satisfies the assumptions of

Theorem 4.8 with εL in place of ε, then there exists an `-Lipschitz map f : π → π⊥ with

the following properties:

• G := {y ∈ ∂∗E ∩ Br/100 s.t. Exc(π, y, s) < λ ∀s < r
10} ⊆ Γf , where λ = λ(`) is a

suitable constant,

• ∂∗E ∩Br/100 and Γf are included in the (βr)-neighborhood of π,

• Hn((∂∗E \G) ∩Br/100) +Hn((Γf \G) ∩Br/100) ≤ C(n)
λ Exc(π, x, r)rn.

Here Γf := {z + f(z) | z ∈ π} is the graph of f (viewing π, π⊥ as subsets of Rn+1).

Recall that the η-neighborhood of a set S is
⋃
p∈S Bη(p), or equivalently the set of points

whose distance from S is < η.

The result will follow with little work from the following lemma, whose statement is

somewhat cleaner.

Lemma 5.2 (“height” lemma). Given δ > 0 there exists εH(δ) with the following property:

if E satisfies the same assumptions as Theorem 4.8 with εH in place of ε, then

• ∂∗E ∩Br/2(x) ⊆ (δr)-neighborhood of x+ π,

• µ(Bs(y)) < (ωn + δ)sn for all y ∈ Br/2(x) and all s ≤ r
4 .

The word “height” refers to the first conclusion, which is the most important one and

says that the “height” of ∂∗E over x+ π is ≤ δr (on the ball Br/2(x)).

Proof. Wlog x = 0, r = 1. We argue by contradiction. Note that we want the constant

εH to be independent of E, hence if the statement is not true we can find stationary sets

Ej , satisfying

θj(0) := lim
s→0

µj(Bs(0))

ωnsn
≥ 1, Exc(Ej , π, 0, 1) < εj , µj(B1) < (ωn + εj)
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for a sequence εj → 0 (here µj := Hn ∂∗Ej), but such that one of the two conclusions is

false.

Up to subsequences, we assume µj ⇀ µ∞ as Radon measures. We claim that

µ∞ = Hn (π ∩B1).(5)

Once this claim is proved, it is easy to reach a contradiction. Indeed, assuming that the

first conclusion fails for infinitely many j’s, up to passing to the corresponding subsequence

there exist points yj ∈ B1/2 with dist(yj , π) ≥ δ and yj ∈ ∂∗Ej . Hence, by monotonicity,

µj(Bδ/2(yj)) ≥ ωn(δ/2)nθj(yj) = ωn(δ/2)n(6)

since θj = 1 on ∂∗Ej (wlog δ < 1). Up to further subsequences, we can assume yj → y∞.

Note that y∞ ∈ B1/2 and dist(y∞, π) ≥ δ. Now (6) implies

µ∞(Bδ/2(y∞)) ≥ ωn(δ/2)n,

while (5) trivially gives µ∞(Bδ/2(y∞)) = 0 since Bδ/2(y∞) ∩ π = ∅.
Similarly we reach a contradiction if the second conclusion fails for infinitely many j’s,

since in the same way we can assume (up to subsequences) that there are sets Ej , points

yj ∈ B1/2 and radii sj ≤ 1
4 such that

µj(Bsj (yj)) ≥ (ωn + δ)snj ,

so that by monotonicity

µj(B1/4(yj)) ≥ (ωn + δ)(1/4)n.

Assuming as before that yj → y∞, we deduce µ∞(B1/4(y∞)) ≥ (ωn + δ)(1/4)n, but it is

easy to see that

µ∞(B1/4(y∞)) = Hn(π ∩B1/4(y∞)) ≤ ωn(1/4)n.

We are left to prove the claim. Recall (1), which gives∫
B1\Bσ

|T⊥y ∂∗Ej(y)|2

|y|n+2
dµj(y) ≤ µj(B1)

1n
− µj(Bσ)

σn

for any fixed 0 < σ < 1. By monotonicity again, the second ratio is at least ωnθj(0) ≥ ωn,

hence the right-hand side is bounded by (ωn+εj)−ωn. We deduce that the left-hand side

is infinitesimal as j →∞. On the other hand,∫
B1\Bσ

|π⊥y|2 dµj(y) ≤ 2

∫
B1\Bσ

‖π⊥ − T⊥y ∂∗Ej‖2 dµj(y) + 2

∫
B1\Bσ

|T⊥y ∂∗Ej(y)|2 dµj(y)

≤ 2 Exc(Ej , π, 0, 1) + o(1)→ 0

since ‖π⊥ − T⊥y ∂∗Ej‖ = ‖π − Ty∂∗Ej‖ (being π⊥ = id−π and similarly for Ty∂
∗Ej). In

the limit we deduce∫
B1\Bσ

|π⊥y|2 dµ∞(y) ≤ lim inf
j→∞

∫
B1\Bσ

|π⊥y|2 dµj(y) = 0,
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hence |π⊥y| = 0 for µ∞-a.e. y ∈ B1 \ Bσ. Since σ was arbitrary, we get supp(µ∞) ⊆ π.

Finally, note that by stationarity∣∣∣ ∫
B1

divπX dµj(y)
∣∣∣

=
∣∣∣ ∫

B1

(divπX − divTy∂∗Ej X) dµj(y)
∣∣∣

≤ C(n)‖DX‖L∞ Exc(Ej , π, 0, 1)1/2,

for all X ∈ C∞c (B1,Rn+1) (the last inequality is left as an exercise). In the limit we get∫
B1

divπX dµ∞ = 0. Assuming wlog π = span{e1, . . . , en}, for any ϕ ∈ C∞c (Bn
1 ) we have∫

B1

divπ(ϕ(y′)ek) dµ∞(y) = 0(7)

for all k = 1, . . . , n, where we denote y = (y′, yn+1). Indeed, although this vector field is

not supported in B1, we have supp(ϕ) ⊆ Bn
1−η for some η > 0 and we can find a cut-off

function ψ ∈ C∞c (B1
η) such that ψ = 1 on B1

η/2, say. Then the vector field ϕ(y′)ψ(yn+1)ek

is admissible in the definition of stationarity, namely it is supported in B1, and (7) fol-

lows since inserting ψ(yn+1) or not makes no difference in the integral (we already know

supp(µ∞) ⊆ π).

Viewing µ∞ as a measure in Rn, we deduce∫
Bn1

∂ϕ

∂xk
dµ∞ = 0.

Hence, µ∞ is a constant multiple of Ln Bn
1 (exercise; hint: regularize µ∞ by convolution),

say µ∞ = αLn Bn
1 . But

µ∞(B1) ≤ lim inf
j→∞

µj(B1) ≤ ωn,

hence α ≤ 1, and

µ∞(B1/2) ≥ lim sup
j→∞

µj(B1/2) ≥ lim sup
j→∞

ωn(1/2)nθj(0) ≥ ωn(1/2)n,

thus α ≥ 1. Our claim (5) follows. �

Proof of Proposition 5.1. Wlog r = 1. We choose:

• λ := εH(`/10), i.e., we apply Lemma 5.2 with δ := `/10 and we let λ be the correspond-

ing εH making the lemma work with this δ,

• εL := εH(min{β, λ}).

Note that we immediately have that ∂∗E ∩ B1/2 is included in a β-neighborhood of π,

thanks to the second choice and the first conclusion of Lemma 5.2.

If now y, z ∈ G are distinct, then we fix s := 3|y − z| < 1
10 and we look at the ball

Bs(y). Since s ≤ 1
4 , by our second choice and the second conclusion of Lemma 5.2 we get

µ(Bs(y)) < (ωn + λ)sn.
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More importantly, we have Exc(π, y, s) < λ by the very definition of G. Hence, Lemma 5.2

applies on Bs(y): recalling that λ = εH(`/10), its first conclusion gives

dist(z − y, π) <
`

10
s,

which can be written as |π⊥(z − y)| < 3
10`|z − y|. Using the triangle inequality (and

assuming wlog ` < 1), it is easy to deduce

|π⊥(z − y)| ≤ `|π(z − y)|.

It follows that the projection π : G → π is injective, since if π(y) = π(z) we deduce that

also π⊥(y) = π⊥(z), and the inverse can be written as id +f , with f : π → π⊥ satisfying

|f(z′)− f(y′)| ≤ `|z′ − y′|.
We already know |f | ≤ β, since G ⊆ ∂∗E ∩ B1/2, hence as we saw in the first class we

can extend f to an `-Lipschitz map π → π⊥, still denoted f , with |f | ≤ β. Thus we are

left to show the third statement.

For all y ∈ (∂∗E \ G) ∩ B1/100, by definition of excess there exists a ball Bsy(y) with∫
Bsy (y) ‖π − Tz∂

∗E‖2 dµ(z) ≥ λsny and sy <
1
10 . Vitali’s covering lemma gives a disjoint

subcollection {Bsj (yj)} such that the dilated balls B5sj (yj) cover (∂∗E \ G) ∩ B1/100. It

may be tempting to use the definition of Hausdorff measure to conclude, but the only

upper bound we have on the radii sj is 1
10 . We use our measure µ instead:

µ((∂∗E \G) ∩B1/100) ≤
∑
j

µ(B5sj (yj))

≤ C(n)
∑
j

snj

≤ C(n)

λ

∫
⋃
Bsj (yj)

‖π − Tz∂∗E‖2 dµ(z)

≤ C(n)

λ
Exc(π, 0, 1)

where the third inequality comes from disjointness, while the second follows form mono-

tonicity, as

µ(B5sj (yj))

(5sj)n
≤
µ(B1/2(yj))

(1/2)n
≤ 2n(ωn + εL)

(and wlog εL < 1, say). In order to estimate (Γf \G)∩B1/100, we note that this is a subset

of Γf = (id×f)(Rn), where now wlog π = Rn × {0} and we view f : Rn → R. Hence, by

the area formula,

Hn((Γf \G) ∩B1/100) ≤
√

2Ln(π((Γf \G) ∩B1/100))

where we used J(id×f) =
√

1 + |∇f |2 ≤
√

1 + `2 and wlog ` < 1. Since π is injective on

Γf , the last measure is bounded by

Ln(Bn
1/100)− Ln(π(G)).
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Finally, note that Hn(G) ≥ µ(B1/100) − C
λ Exc(π, 0, 1) by what we already proved, and

µ(B1/100) ≥ ωn(1/100)nθ(0) ≥ ωn(1/100)n by monotonicity, while by the area formula

(for the map π)

Ln(π(G)) =

∫
G
JTyGπ dHn(y)

and JTyGπ ≥ 1 − C(n)‖π − Ty∂∗E‖2 for a.e. y ∈ G (by (4) and the fact that G ⊆ ∂∗E).

Hence, Ln(π(G)) ≥ Hn(G)−C(n) Exc(π, 0, 1) ≥ Ln(Bn
1/100)−C(n)

λ Exc(π, 0, 1). Combining

these inequalities, we arrive at

Hn((Γf \G) ∩B1/100) ≤
√

2(Ln(Bn
1/100)− Ln(π(G))) ≤ C(n)

λ
Exc(π, 0, 1),

as desired. �

5.2. Harmonic approximation. As already said, we want to show that ∂∗E is essen-

tially the graph of a harmonic function and exploit the fact that we have the desired

improvement of flatness of such graphs. The latter fact is the content of the next very

simple proposition.

Proposition 5.3 (“improvement of flatness” for harmonic graphs). If u : Bn
1 → R is

harmonic, then for all 0 < η ≤ 1
2 we have

sup
x∈Bnη

|u(x)− u(0)− 〈∇u(0), x〉| ≤ C(n)η2‖∇u‖L2(Bn1 ).

The left-hand side bounds the distance of the point (x, u(x)) ∈ Γu from the affine n-

plane {u(0) + 〈∇u(0), z〉 | z ∈ Rn}. Hence, with respect to this plane, the graph Γu

has a small tilt on the ball Bη((0, u(0))), much smaller than ‖∇u‖2L2 (which should be

thought informally as the excess) if η is chosen small. In the next section we will transfer

this information to f , using the technical proposition below, and then show that also the

excess on a ball of size ∼ η (with respect to a different plane) is much smaller than the

original excess thanks to the tilt-exces inequality.

Proof. Let ϕ ∈ C∞c (Bn
1/2) be radial and such that

∫
Rn ϕ = 1. Then the mean-value

property enjoyed by u gives u = u ∗ ϕ on B2
1/2. By Taylor expansion we have

sup
x∈Bnη

|u(x)− u(0)− 〈∇u(0), x〉| ≤ η2 sup
Bnη

‖∇2u‖.

But ∂2

∂xi∂xj
(u ∗ ϕ) = ∂u

∂xi
∗ ∂ϕ
∂xj

on Bn
η ⊆ Bn

1/2, hence ‖∇2u‖ ≤ |∇u| ∗ |∇ϕ| here (using the

Hilbert–Schmidt norm for matrices) and this implies

‖∇2u‖(x) ≤
∫
Rn
|∇u|(x− y)|∇ϕ|(y) dy ≤ ‖∇u‖L2‖∇ϕ‖L2

by Cauchy–Schwarz, for all x ∈ Bn
η . The claim follows since ‖∇ϕ‖L2 depends only on

n. �
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The next proposition says that if a function f : Bn
1 → R almost verifies the weak

definition of harmonicity, which would be∫
Bn1

〈∇f,∇ϕ〉 = 0 for all ϕ ∈ C∞c (Bn
1 ),

then it is close in L2(Bn
1 ) to a harmonic function.

Proposition 5.4 (harmonic approximation). Assume f ∈ W 1,2(Bn
1 ) has

∫
Bn1
|∇f |2 ≤ 1.

For all ρ > 0 there exists εA(ρ) such that if∣∣∣ ∫
Bn1

〈∇f,∇ϕ〉
∣∣∣ ≤ εA‖∇ϕ‖L∞ for all ϕ ∈ C∞c (Bn

1 )

then there exists u : Bn
1 → R harmonic with∫

Bn1

|f − u|2 ≤ ρ and

∫
Bn1

|∇u|2 ≤ 1.

Proof. By contradiction, assume there exists a sequence of functions fj ∈ W 1,2 with

‖∇fj‖L2 ≤ 1 and ∣∣∣ ∫
Bn1

〈∇fj ,∇ϕ〉
∣∣∣ ≤ εj‖∇ϕ‖L∞ for all ϕ ∈ C∞c (Bn

1 ),

for a sequence εj → 0, but such that ‖fj − u‖l2 ≥
√
ρ for all u : Bn

1 → R harmonic with

‖∇u‖L2 ≤ 1.

Subtracting from each fj its average does not change any of these properties, so we can

assume that
∫
Bn!
fj = 0. Poincaré’s inequality then implies that (fj) is a bounded sequence

in W 1,2, which is a Hilbert space. Hence, up to subsequences we can assume that uj ⇀ u∞

(weak convergence in W 1,2), which gives uj → u∞ strongly in L2 by Rellich’s compact

embedding theorem.

Due to this strong convergence, we still have ‖f∞ − u‖L2 ≥ √ρ for all u as above, but

now the weak convergence ∇fj ⇀ ∇f∞ in L2 gives∫
Bn1

〈∇f∞,∇ϕ〉 = lim
j→∞

∫
Bn1

〈∇fj ,∇ϕ〉 = 0

for all ϕ ∈ C∞c (Bn
1 ). This is the weak characterization of harmonicity, so f∞ is smooth

and harmonic, Moreover, by lower semicontinuity of the norm under weak convergence,

‖∇f∞‖L2 ≤ lim inf
j→∞

‖∇fj‖L2 ≤ 1.

Hence, we can choose u := f∞ and obtain the contradiction 0 = ‖f∞ − u‖L2 ≥ √ρ. �

Remark 5.5. We could have showed a real “improvement of flatness” for u, like

sup
x∈Bnη

|∇u(x)−∇u(0)| ≤ C(n)η‖∇u‖L2 ,

with the same proof. However, Proposition 5.4 forces us to use the tilt in order to transfer

the improvement of flatness to f , since f is close to u in L2 rather than W 1,2. The need

of using the tilt comes also from the fact that we cannot bound the excess produced by

∂∗E \ Γf , while we will be able to say that its tilt is very small since its distance from π

is ≤ β.
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We now show that a suitable normalization of the function f given by Lipschitz ap-

proximation satisfies the previous proposition (where of course we can change the radius

from 1 to 1/200).

Proposition 5.6. Assume again x = 0, r = 1, π = Rn × {0}. If ` and E := Exc(π, 0, 1)

are small enough, then
∫
Bn

1/200
|∇f̃ |2 ≤ 1 and

sup
ϕ∈C∞c (Bn

1/200
)\{0}

∣∣∣ ∫Bn
1/200
〈∇f̃,∇ϕ〉

∣∣∣
‖∇ϕ‖L∞

can be made arbitrarily small, where f̃ := (C0E)−1/2f for some dimensional constant

C0(n) and f : Rn → R is the map given by Proposition 5.1. In more precise words, for all

ε̃ there exists δ̃ such that, if `, E < δ̃, then
∫
Bn

1/200
|∇f̃ |2 ≤ 1 and

∣∣∣ ∫
Bn

1/200

〈∇f̃,∇ϕ〉
∣∣∣ ≤ ε̃‖∇ϕ‖L∞

for all ϕ ∈ C∞c (Bn
1/200).

Proof. Step 1. Fix ϕ ∈ C∞c (Bn
1/200). By stationarity we have

0 =

∫
B1/100

divTy∂∗E(ϕ(y′)en+1) dµ(y),(8)

where we use the notation y = (y′, yn+1). Note that the vector field X(y) := ϕ(y′)en+1

does not have compact support; however ∂∗E ∩ B1/100 is contained in a β-neighborhood

of π (wlog β < 1/200) and hence we can multiply our vector field by a cut-off function

ψ(yn+1), with ψ(t) = 1 for |t| ≤ β and ψ(t) = 0 for |t| ≥ 1/200, making it supported in

B1/100, without changing the value of the above integral, so that (8) is justified.

Also, by Proposition 5.1, noting that Ty∂
∗E = TyΓf for Hn-a.e. y ∈ G ⊆ ∂∗E ∩ Γf as

seen in the first class, we have∣∣∣ ∫
Rn+1

divTyΓf X dHn Γf (y)−
∫
B1/100

divTy∂∗E X dµ(y)
∣∣∣

≤ C(n)‖∇ϕ‖L∞
(
Hn((Γf \G) ∩B1/100) +Hn((∂∗E \G) ∩B1/100)

)
≤ C(n)

λ
E‖∇ϕ‖L∞ .

(9)

Now TyΓf = span{vj(y′)}n1 for Hn-a.e. y ∈ Γf , where vj(y
′) := ej + ∂f

∂xj
(y′)en+1. Hence

the projection onto TyΓf , still denoted TyΓf , is given by (exercise)

TyΓf (z) =

n∑
i,j=1

vig
ij〈vj , z〉(10)

for all z ∈ Rn+1, where gij is the inverse matrix of gkm := 〈vk, vm〉. Note that, since

|gkm − δkm| ≤ |∇f |2 ≤ `2, if ` is small enough then the inverse gij really exists and

satisfies |gij − δij | ≤ C(n)|∇f |2 pointwise.
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The graph Γf is the image of the injective map id×f : Rn → Rn+1, so the area formula

gives

∣∣∣ ∫
Rn

divTyΓf XJ(id×f)(y′) dy′
∣∣∣ =

∣∣∣ ∫
Rn+1

divTyΓf X dHn Γf (y)
∣∣∣ ≤ C(n)

λ
E‖∇ϕ‖L∞ ,

(11)

where the inequality comes from (9) and (8).

Note that J(id×f) =
√

1 + |∇f |2 = 1 +O(|∇f |2), while formula (10) gives

divTyΓf X = 〈TyΓf∇ϕ(y′), TyΓfen+1〉

= 〈∇ϕ(y′), TyΓfen+1〉

=
n∑

i,j=1

∂ϕ

∂xi
(y′)gij(y′)

∂f

∂xj
(y′)

(viewing ∇ϕ(y′) as a vector in Rn+1; we used that ∇ϕ(y′) ⊥ en+1, hence 〈∇ϕ(y′), vi〉 =
∂ϕ
∂xi

(y′)). Using also the fact that gij = δij +O(|∇f |2), we deduce that∫
Rn

divTyΓf XJ(id×f)(y′) dy′ =

∫
Rn
〈∇f,∇ϕ〉+O

(
‖∇ϕ‖L∞

∫
Bn

1/200

|∇f |2
)
.(12)

Step 2. We claim that
∫
Bn

1/200
|∇f |2 is bounded by E, provided that ` is small enough.

Indeed,∫
B1/100

‖π − TyΓf‖2 dHn Γf (y) ≤ E + C(n)Hn((Γf \G) ∩B1/100) ≤ E +
C(n)

λ
E,

but, using again the area formula, the left-hand side is bounded below by∫
Bn

1/200

‖π − TyΓf‖2J(id×f) dy′,

since (y′, f(y′)) ∈ B1/100 for all y′ ∈ Bn
1/200 (recall that we assume β < 1/200 and |f | ≤ β).

To conclude, note that

‖π − TyΓf‖2 ≥ |π(π − TyΓf )en+1|2

=
∣∣∣ n∑
i,j=1

π(vi)g
ij〈vj , en+1〉

∣∣∣2
≥
∣∣∣ n∑
i,j=1

eig
ij ∂f

∂xj

∣∣∣2
≥ 1

2

∣∣∣ n∑
i,j=1

eiδ
ij ∂f

∂xj

∣∣∣2 − C(n)|∇f |4,

where we used
∣∣∣∑n

i,j=1 eiδ
ij ∂f
∂xj

∣∣∣2 ≤ 2
∣∣∣∑n

i,j=1 eig
ij ∂f
∂xj

∣∣∣2+2
∣∣∣∑n

i,j=1 ei(δ
ij−gij) ∂f∂xj

∣∣∣2. Hence,

using also J(id×f) = 1 +O(|∇f |2), we reach the estimate∫
Bn

1/200

‖π − TyΓf‖2J(id×f) dy′ ≥ 1

2

∫
Bn

1/200

|∇f |2(1− C(n)|∇f |2) dy′
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and choosing ` so small that 1− C(n)|∇f |2 ≥ 1− C(n)`2 ≥ 1
2 we get∫

Bn
1/200

|∇f |2 ≤ 2

∫
B1/100

‖π − TyΓf‖2 dHn Γf (y) ≤ C0(n)E

for some big constant C0(n), since the parameter λ depended only on `, which is now

chosen in a precise way depending only on n (so that now also λ = λ(n)). This proves our

claim.

Step 3. We deduce that f̃ = (C0E)−1/2f satisfies
∫
Bn

1/200
|∇f̃ |2 ≤ 1 and, combining (11)

with (12), ∣∣∣ ∫
Bn

1/200

〈∇f̃,∇ϕ〉
∣∣∣ ≤ C(n)

√
E‖∇ϕ‖L∞ .

The statement follows. �

5.3. Proof of Theorem 4.9. As usual, wlog we assume x = 0, r = 1, π = Rn × {0}.
Let f : Rn → R given by the Lipschitz approximation, namely Proposition 5.1. Thanks to

Proposition 5.6, if E := Exc(π, 0, 1) is small enough, we can apply (the “radius 1/200”-

version of) Proposition 5.4 and find ũ : Bn
1/200 → R harmonic with∫

Bn
1/200

|f̃ − ũ|2 ≤ ρ,
∫
Bn

1/200

|∇ũ|2 ≤ 1.

Setting u :=
√
C0Eũ and recalling that f =

√
C0Ef̃ , we find∫

Bn
1/200

|f − u|2 ≤ C(n)ρE,

∫
Bn

1/200

|∇u|2 ≤ C(n)E.(13)

Now let x̃ := (0, u(0)) and π̃ := span{ej + ∂u
∂xj

(0)en+1}n1 . Note that

dist(x̃, π̃) ≤ |x̃| = |u(0)| ≤ C(n)‖u‖L1 ≤ C(n)‖u− f‖L1 + C(n)‖f‖L1 ≤ C(n)(
√
ρE + β),

where the bound on |u(0)| comes from the mean-value property. We also have |∇u(0)| ≤
C(n)‖u‖L1 , because writing u = u ∗ ϕ near 0 as in the proof of Proposition 5.3 we get

|∇u(0)| = |(u ∗ ∇ϕ)(0)| ≤ ‖u‖L1‖∇ϕ‖L∞ . This gives (exercise)

‖π⊥ − π̃⊥‖ = ‖π − π̃‖ ≤ C(n)|∇u(0)| ≤ C(n)(
√
ρE + β),

as well. Now fix η > 0 to be chosen later on. We want to estimate the tilt

(4η)−n−2

∫
B4η(x̃)

dist(y − x̃, π̃)2 dµ(y).(14)

We first note that∫
B1/100\Γf

dist(y − x̃, π̃)2 dµ(y) ≤ C(n)E dist(x̃, π̃)2 + 2

∫
B1/100\Γf

dist(y, π̃)2 dµ(y)

and, since dist(y, π̃) = |π̃⊥y|, the last integral is bounded by

2

∫
B1/100\Γf

‖π̃ − π‖2 dµ(y) + 2

∫
B1/100\Γf

|π⊥y|2 dµ(y) ≤ C(n)(ρE + β2)E,
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being |π⊥y| = dist(y, π) ≤ β for y ∈ ∂∗E ∩ B1/100 and Hn((∂∗E \ Γf ) ∩ B1/100) ≤ C(n)E

(recall that λ was fixed during the proof of Proposition 5.6 and depends now only on n).

We deduce that ∫
B1/100\Γf

dist(y − x̃, π̃)2 dµ(y) ≤ C(n)(ρE + β2)E.

More importantly, using the area formula and bounding J(id×f) ≤ 2, we have∫
Γf∩B4η(x̃)

dist(y − x̃, π̃)2 dµ(y) ≤ 2

∫
Bn4η(0)

|f(y′)− u(0)− 〈∇u(0), y′〉|2 dy′,

since y − x̃ = (y′, f(y′)− u(0)) and (y′, 〈∇u(0), y′〉) ∈ π̃. The last integral is bounded by

C(n)

∫
Bn4η

|f − u|2 + C(n)ηn sup
y′∈Bn4η

|u(y′)− u(0)− 〈∇u(0), y′〉|2 ≤ C(n)(ρE + ηn+4E),

thanks to Proposition 5.3 and (13). Assuming our parameters η, β, ρ are small enough, we

have B4η(x̃) ⊆ B1/100(0), in view of our bound for |x̃|. Hence, we can bound the quantity

(14) with the estimates that we found for B1/100 \ Γf and Γf ∩B4η(x̃), arriving at

(4η)−n−2

∫
B4η(x̃)

dist(y − x̃, π̃)2 dµ(y) ≤ C(n)η−n−2(ρE + β2 + ρ+ ηn+4)E.

If β and ρ are small enough with respect to η (assuming wlog E ≤ 1), then we have

|x̃| ≤ C(n)(
√
ρE + β) ≤ η and hence the inclusion B2η(x̃) ⊇ Bη(0). This, together with

the tilt-excess inequality (Proposition 4.11) on the ball B4η(x̃), finally gives

Exc(π̃, 0, η) ≤ 2n Exc(π̃, x̃, 2η) ≤ C(n)η−n−2(ρE + β2 + ρ)E + C(n)η2E.

It is now a trivial matter to realize that this is ≤ E/2 if we impose η � 1, β2 � ηn+2 and

ρ � ηn+2. Note that imposing small values for β and ρ requires having E small enough,

in turn, according to Proposition 5.1 and Proposition 5.6.

5.4. Proof of Theorem 4.8. As already said, Theorem 4.8 follows with really little work

from Theorem 4.9. Assume again x = 0, r = 1.

In the video these theorems were called Theorem 1 and 2. For the sake of clarity, let us

call εThm 2 the constant ε making Theorem 4.9 (“Theorem 2”) work. We will show that

Theorem 4.8 (“Theorem 1”) holds with a certain constant ε = εThm 1 much smaller than

εThm 2.

First of all, using the “height lemma” (Lemma 5.2), we can take εThm 1 so small that

µ(Bs(x̂)) < (ωn + εThm 2)sn for all x̂ ∈ B1/2, s ≤
1

4
.(15)

So, fixing any x̂ ∈ ∂∗E ∩ B1/100 and asking also 4nεThm 1 < εThm 2, we observe that

Theorem 4.9 applies on B1/4(x̂) since

Exc(π, x̂, 1/4) ≤ 4n Exc(π, 0, 1) < 4nεThm 1 < εThm 2.

Hence, for a new n-plane π1 we get

Exc(π1, x̂, η/4) ≤ 1

2
Exc(π, x̂, 1/4).(16)
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By the very nature of Theorem 4.9, we can iterate it infinitely many times. Indeed, its

conclusion (16) and (15) give µ(Bη/4(x̂)) < (ωn + εThm 2)(η/4)n and Exc(π1, x̂, η/2) <

εThm 2. So we can apply Theorem 4.9 on Bη/4(x̂) (with π1 in place of π), and so on. We

thus get planes π0 := π, π1, π2, . . . such that

Exc(πj+1, x̂, η
j+1/4) ≤ 1

2
Exc(πj , x̂, η

j/4),

hence Exc(πj , x̂, η
j/4) ≤ 2−j4n Exc(π, 0, 1). We now claim that we can actually replace πj

with π and still have small excess. This follows comparing πj , πj+1 with the approximate

tangent plane Ty∂
∗E:

‖πj − πj+1‖2 ≤
2

µ(Bηj+1/4(x̂))

∫
B
ηj+1/4

(x̂)
‖πj − Ty∂∗E‖2 dµ(y)

+
2

µ(Bηj+1/4(x̂))

∫
B
ηj+1/4

(x̂)
‖πj+1 − Ty∂∗E‖2 dµ(y)

≤ C(n) Exc(πj , x̂, η
j/2) + C(n) Exc(πj+1, x̂, η

j+1/2),

where we used the inequalities µ(Bηj+1/4(x̂)) ≥ c(n)(ηj+1/4)n, c(n)(ηj/4)n coming from

monotonicity (recall that θ(x̂) = 1 since x̂ ∈ ∂∗E). It follows that ‖πj − πj+1‖ ≤
C(n)

√
2−jεThm 1, so that

‖π − πj‖ ≤
j−1∑
k=0

‖πk − πk+1‖ ≤ C(n)

j−1∑
k=0

2−k/2
√
εThm 1 ≤ C(n)

√
εThm 1

and, using
µ(B

ηj/4
(x̂))

(ηj/4)n
≤ µ(B1/4(x̂))

(1/4)n ≤ 4n(ωn + εThm 1), we deduce

Exc(π, x̂, ηj/4) ≤ 2 Exc(πj , x̂, η
j/4) + 2

µ(Bηj/4(x̂))

(ηj/4)n
‖π − πj‖2 ≤ C(n)εThm 1.

It follows easily that, for a possibly different C(n), we have Exc(π, x̂, s) ≤ C(n)εThm 1 for

all s ≤ 1
4 (exercise). Now we apply again the Lipschitz approximation, namely Proposi-

tion 5.1, on B1. If εThm 1 is so small that the last quantity C(n)εThm 1 is smaller than λ

(recall that λ in the end depends only on n), then x̂ ∈ G. Hence, with all these assumptions

on εThm 1, we deduce that

∂∗E ∩B1/100 ⊆ Γf

for some `-Lipschitz map f : π → π⊥. This is already a big achievement, given that

general sets of finite perimeter can behave very wildly!

Next, assuming π = Rn × {0}, we define the relatively closed subset G′ ⊆ Bn
1/200

G′ := {y′ ∈ Bn
1/200 : (y′, f(y′)) ∈ ∂∗E}.

Note that (y′, f(y′)) ∈ B1/100, since wlog ` < 1. We want to show that G′ = Bn
1/200, which

implies that in fact ∂∗E ∩B1/200 = Γf ∩B1/200. If G′ is a proper subset of Bn
1/200 then we

can find a ball Bn
r0(y′0) ⊆ Bn

1/200 touching G′ from outside, meaning that Bn
r0(y′0)∩G′ = ∅

and z′0 ∈ G′ for some z′0 on the sphere ∂Bn
r0(y′0). For instance, pick a point y′ ∈ ∂G inside

the ball Bn
1/200 and then a point y′0 ∈ (G′)c very close to y′, and choose the biggest ball

Bn
r0(y′0) disjoint from G′: this ball must touch G′ by maximality.
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Monotonicity gives µ(Bs(z0)) ≥ ωnsn, since z0 := (z′0, f(z′0)) belongs to ∂∗E and hence

has θ(z0) ≥ 1. On the other hand, the area formula gives

µ(Bs(z0)) ≤
∫
Bns (z′0)∩G′

J(id×f),

since µ = Hn ∂∗E and ∂∗E is parametrized by id×f inside Bs(z0) ⊆ B1/100 (for s small).

But J(id×f) =
√

1 + |∇f |2 and Bn
s (z′0) ∩G′ ⊆ Bn

s (z′0) \Bn
r0(y′0), which is asymptotically

like a half-ball as s→ 0. Hence,

ωns
n ≤ µ(Bs(z0)) ≤ (ωn/2 + o(1))sn

√
1 + `2

which is a contradiction for s → 0 (wlog ` < 1). Thus we have “no holes” in the closure

of the reduced boundary, i.e. ∂∗E ∩B1/200 = Γf ∩B1/200.

Finally, we turn to the C1,γ regularity of ∂∗E. Applying (and iterating) Theorem 4.9

as before at any y ∈ ∂∗E ∩B1/400, we get

Exc(y, πj , η
j/400) ≤ C(n)2−jεThm 1.

As already observed, πj is very close to π. Hence, it equals span{ek+ajken+1 | k = 1, . . . , n}
for some aj ∈ Rn small (exercise). Also, observe that Tz∂

∗E = span{ej + ∂f
∂xj

(z′)en+1}n1
for µ-a.e. z. This implies

|∇f(z′)− aj |2 ≤ C(n)‖Tz∂∗E − πj‖2

(exercise; hint: reason as in the proof of Proposition 5.6). The graph of f |Bn
ηj/800

(y′) is

included in Bηj/400(y), hence in ∂∗E ∩ Bηj/400(y) up to a Hn-negligible set (thanks to

Γf ∩B1/200 = ∂∗E ∩B1/200, the inclusion Bηj/400(y) ⊆ B1/200 and the fact that ∂∗E \ ∂E
is Hn-negligible). We deduce with the area formula that∫

Bn
ηj/800

(y′)
|∇f − aj |2 ≤ C(n) Exc(πj , y, η

j/400) ≤ C(n)2−j .

From this we deduce (exercise) that for all y′ ∈ Bn
1/400 and all radii s < 1

400 there exists

a = a(y′, s) ∈ Rn with ∫
Bs(y′)

|∇f − a|2 ≤ C(n)sα

for some dimensional constant α. Since the left-hand side is minimized when a equals the

average of ∇f on the ball Bn
s (y′), denoted (∇f)y′,s, we arrive at∫
Bns (y′)

|∇f − (∇f)y′,s|2 ≤ C(n)sα

for all y′ ∈ Bn
1/400 and all s < 1

400 . This is the integral characterization of C0,α/2-functions,

namely it gives ∇f ∈ C0,α/2 on the ball Bn
1/400: see for instance [4, Theorem III.1.2].

Theorem 4.8 follows with γ := α
2 .
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