
1 Rectifiable Sets and Preliminary Measure Theory

This section is presented by Prof. Dr. Tristan Rivière on Feb 20, 2020 with the main
reference to [4]. The goal is to provide a common starting point and some reference to
preliminaries. The notes here are written by Yujie Wu. The author tries to recover what
the lecturer carried out, but it’s possible that she introduced error in this process. If you
find any mistake please feel free to contact the writer via yujwu@student.ethz.ch.

First of all, we assume familiarity with the notion of finite dimensional manifolds, im-
mersions, embeddings and submanifiolds, especially in Euclidean spaces. A introductory
reading can be [2]. For simplicity all the measures in this section are defined on subsets
of Rn.

We start with recalling the definition of Hausdorff measure.

Definition 1.1. The k-dimensional Hausdorff measure of step δ is defined through ap-
proximation by covering with sets with diameter less or equal to δ. To be precise,

Hkδ (E) := inf
F∈Fδ(E)

∑
j

ωk(
diamFj

2
)k

where Fδ is the set of admissible covering, that is,

Fδ(E) := {(Fj)j∈N, Fj ⊂ Rn, diamFj < δ,E ⊂ ∪jFj}.

If no such covering exists, then we say that E does not have finite Hk measure.
The k-dimensional Hausdorff measure of step δ increases as δ → 0, so we can define

the k-dimensional Hausdorff measure as,

Hk(E) := sup
δ>0
Hkδ (E) = lim

δ→0
Hkδ (E).

One can check that the k-dimensional Hausdorff measure is an outer measure.

Definition 1.2. We say that a set E is measurable with respect to an outer measure µ
if for any set F ,

µ(F ) = µ(E ∩ F ) + µ(F \ E).

The family of measurable sets form a σ-algebra, and µ is countably additive on measurable
sets.

A Borel measure is an outer measure defined on the σ-algebra of Borel sets.
The following lemma is called the Carathéodory condition.

Lemma 1.3. If µ is an outer measure on Rn, then Borel sets are measurable with re-
spect to µ if and only if for any two sets with positive distance, E1, E2, d(E1, E2) =
infx∈E1,y∈E2 d(x, y) > 0, we have,

µ(E1 ∪ E2) = µ(E1) + µ(E2).

Notice that Borel sets are not measurable with respect to Hkδ , but with respect to Hk.

Definition 1.4. An outer measure µ is Borel regular if Borel sets are µ-measurable, and
for any set E ⊂ Rn, there is a Borel set F ⊃ E, such that µ(F ) = µ(E).

The k-dimensional Hausdorff measure is Borel regular.
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Definition 1.5. An outer measure is a Radon measure if it is locally finite (finite on
compact sets), Borel regular.

We want to move on to the definition of rectifiability.

Definition 1.6. Assume an integer 0 ≤ k ≤ n. A subset M in Rn is k-rectifiable, if
Hk(M) <∞, and there is countably many Lipschitz maps ϕj : Rk → Rn, such that,

Hk(M \ ∪jϕj(Rk)) = 0.

A set M is called locally k-rectifiable, if for any compact set K, K ∩M is recitifiable.
With the following theorem we can see that the above definition can be slightly

changed: the domain of the Lipschitz maps can be set as any subset of Rn.

Theorem 1.7 (Kirszbraun’s Theorem). A Lipschitz map f : Rn1 ⊃ E → Rn2 can be
extended to g : Rn1 → Rn2 with the same Lipschitz constant.

We mention that understanding of the Rademacher’s theorem, Lusin’s Theorem,
Egorov’s theorem and Area formula would also be useful for later use.

With these tools, one can show that k-rectifiable sets can be “almost” covered by C1

submanifolds of dimension k of Rn.
These discussions lead to the existence of approximate tangent planes.

Theorem 1.8. If M is a k-rectifiable set, then for Hk almost everythere x ∈M , there is
a k-dimensional plane πx in Rn,

Hkb
(
M − x
r

)
∗
⇀ Hkbπx, as r → 0.

We call this uniquely determined plane πx as approximate tangent space to M at x.

Remark 1.9. The weak star convergence as measures is equivalent to

lim
r→0

∫
M

1

rk
ϕ

(
y − x
r

)
dHk(y) =

∫
πx

ϕ(z)dHk(z), ∀ϕ ∈ C0
c (Rn).

In particular, the density of the Radon measure µ = HkbM (when compared with Hk)
exists µ almost everywhere and is equal to 1.

Lastly, we would prove the converse also holds true. The proof follows [4], and is a
practice of the facts we have quickly mentioned. We also corrected several typos in the
proof in [4].

Theorem 1.10 (Existence of Tangent Plane Implies Rectifiability). If µ is a Radon
measure on Rn, M is a Borel set in Rn where µ is concentrated on, and for every x ∈M ,
there exists a k-dimensional plane πx such that,

(Φx,r)#µ

rk
∗
⇀ Hkbπx, as r → 0,

with Φx,r(z) = z−x
r .

Furthermore, M is locally k-rectifiable and µ = HkbM .

Remark 1.11. The pushforward of µ is defined to be,∫
Rn
ϕ(y)d(Φx,r)#µ =

∫
Rn
ϕ(
z − x
r

)dµ(z),

which holds for any ϕ ∈ C0
c (Rn).
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We use the following notation. Given π a k-dimensional plane, we denote pπ and p⊥π
the orthogonal projections respectively onto π and π⊥, and we define the following t-cone
of π (t ≥ 0),

K(π, t) = {y ∈ Rn, |p⊥π (y)| ≤ t|pπ(y)|}.

We start with a theorem for a sufficient condition for rectifiability.

Theorem 1.12. If M ⊂ Rn is a bounded set, π is a k-dimensional plane, and there is
δ, t > 0 (independent of x ∈M) such that,

M ∩B(x, δ) ⊂ x+K(π, t), ∀x ∈M,

then one can find finitely many Lipshitz maps whose image in covers M , and thus M is
k-rectifiable.

Proof. For any fixed x0 ∈M and x, y ∈ B(x0,
δ
2)∩M , then y ∈ B(x, δ)∩M ⊂ x+K(π, t),

that is,
|p⊥π (y − x)| < t|pπ(y − x)|,

and we see that pπ is a bijection from B(x0,
δ
2) ∩M onto its image Gx0 ⊂ π. We have

the following for the inverse gx0 : Gx0 →M ,

gx0 ◦ pπ(z) = z,

|gx0(z)− gx0(w)| = |gx0pπ(z̃)− gx0pπ(w̃)| = |z̃ − w̃| ≤ (1 + t)|z − w|, ∀z, w ∈ Gx0 .

Applying a covering of the bounded set M we can find finitely many such Lipshitz maps
in the form of gx0 . We may compose with a transformation to allow the domain to be in
Rk instead of π, and we have shown that M is rectifiable.

Remark 1.13. Notice that in the above proof the k-plane π does not depend on x ∈M ,
we shall construct such planes locally on M in the next proof.

Now we begin the proof of Theorem 1.10.

Proof. We split the proof into four steps.
Step 1
First we claim that for any λ > 0, there are finitely many k-dim planes (σh)h=1,...,N(λ),

such that for any k-dim plane π ⊂ Rn, there is a h ∈ {1, ..., N}, and π is contained in the
λ-cone of σh. This can be achieved by first writing down the (not uniquely) k vectors of
length one spanning π and approximate using unit-length vectors in Sn to form σh, then
show that π lies in the λ-cone of σh.

Step 2
The second claim we will make is the following. We first assume 0 < λ < λ1 < 1, for

λ1 to be chosen soon. If σ and π are k-dim planes and lie in the λ-cone of each other,
then for any w /∈ K(σ, 5λ), B(w, λ|w|) ∩K(π, λ) = ∅.
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We prove this by estimating for v ∈ B(w, λ|w|) ∩K(π, λ),

|p⊥σ (w)|
|w|

≤ |p
⊥
π (w)|+ |p⊥σ pπ(w)|

|w|

≤ |p
⊥
π (v)− p⊥π (v − w)|

|w|
+ λ
|pσpπ(w)|
|w|

≤ λ+
|p⊥π (v)− p⊥π (v − w)|

|w|

≤ λ+
|v − w|
|w|

+ λ
|pπ(v)|
|w|

≤ 2λ+ λ(1 + λ) ≤ 4λ

Now we may choose λ1 small enough so that 4λ√
1−(4λ)2

< 5λ for all λ < λ1, and the claim

follows.
Step 3
Now we move on to the key claim in this proof. If for a bounded subset M ′ ⊂M , the

following limits hold uniformly for all x ∈M ′, then M ′ is Hk-rectifiable,

lim
r→0

µ(B(x, r))

ωkrk
= 1, (1.1)

lim
r→0

µ(B(x, r) \ (x+K(π, λ)))

ωkrk
= 0. (1.2)

To show this we assume that for any ε > 0, there is δ > 0 such that for every x ∈M ′
and r < 2δ,

µ(B(x, r))

ωkrk
≥ (1− ε)ωkrk, (1.3)

µ(B(x, r) \ (x+K(π, λ))) ≤ εωkrk. (1.4)

We set,
M ′h = {x ∈M ′ : σh ⊂ K(πx, λ)}, 1 ≤ h ≤ N.

If we manage to show that for small ε > 0,

B(x, δ) ∩M ′h ⊂ x+K(σh, 5λ),∀x ∈M ′h,

then by Theorem 1.12, we would have M ′h is k-rectifiable.
Indeed, assume not, then for some x ∈ M ′h, y ∈ B(x, δ) ∩M ′h but y − x /∈ K(σh, 5λ),

then from Step 2 , we know,

B(y, λ|y − x|) ⊂ Rn \ (x+K(πx, λ)),

Since λ < 1, we have B(y, λ|y − x|) ⊂ B(x, 2|y − x|), and we can apply equations (1.3)
and (1.4)

(1− ε)ωkλk|y − x|k ≤ µ(B(y, λ|y − x|)) ≤ ε2kωk|x− y|k, (1.5)

which is a contradiction to small ε.
Step 4
Now we are ready to prove that M is locally k-rectifiable. The limits in equation (1.1)

and (1.2) exist for every x ∈M , since

ωk = Hk(πx ∩B(0, 1)) = lim
r→0

(Φx,r)#µ(B(0, 1))

rk
= lim
→0

µ(B(x, r))

rk
. (1.6)
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This gives (1.1), and (1.2) is similar.
Thus one can apply Theorem 6.4 in [4], and conclude that, for any Borel set E ⊂ Rn,

Hk(E ∩M) ≤ µ(E ∩M) ≤ 2kHk(E ∩M). (1.7)

Thus HkbM is locally finite.
With this we can apply Egorov’s theorem on compact subsets of M and follow Step

3, and since µ and HkbM are comparable by (1.7), we can cover M with k-rectifiable
subsets Hk almost everywhere. This gives that M is locally Hk rectifiable.

Finally, equation (1.6) gives us for any x ∈M ,

lim
r→0

µ(B(x, r))

HkbM(B(x, r))
· H

kbM(B(x, r))

ωkrk
= 1.

and Theorem 1.8 gives,

lim
r→0

HkbM(B(x, r))

ωkrk
= 1.

Together we may apply Theorem 5.8 in [4] (Lebesgue–Besicovitch differentiation theorem),
and since µ is concentrated on M , we have that µ is absolute continuous with respect to
HkbM with density 1. Thus we have that µ = HkbM .

Remark 1.14. Another way of obtaining the estimates (1.3) and (1.4) without using
Egorov’s Theorem would be the following (thanks to Alessandro Pigati for pointing this
out). Since we know that the limits in (1.1) and (1.2) exist by assumption, we may choose
a sequence of δj → 0, and for the choice of ε in equation (1.5), we may cover M completely
by the Mj ’s such that the estimates (1.3) and (1.4) holds with δj . Now we may apply
Step 3 to these Mj ’s and continue our argument as in the latter part of Step 4.
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