1. What is percolation?

ETH Zürich, Mini-course, Spring semester 2020

Percolation: applied motivations

Percolation: applied motivations

Geology:

How would water flow through these rocks?

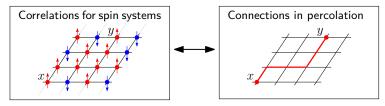
Percolation: applied motivations

Geology:

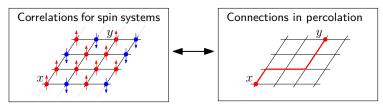
How would water flow through these rocks?

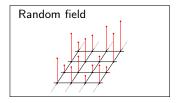
Ecology: How do forest fires propagate?

Statistical mechanics.

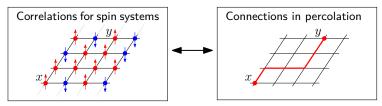


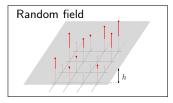
Statistical mechanics.



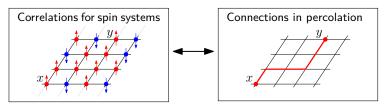


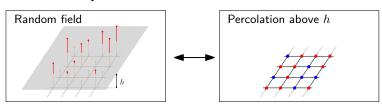
Statistical mechanics.



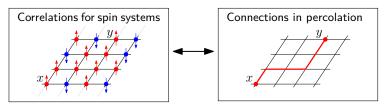


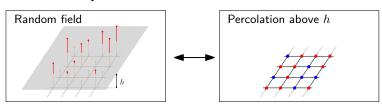
Statistical mechanics.





Statistical mechanics.





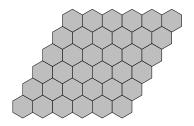
Percolation: main motivation!

Quite apart from the fact that percolation theory had its origin in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods.

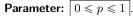
Harry Kesten

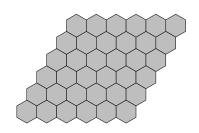
Percolation theory for mathematicians, July 1982.

We tile a lozenge with hexagons.

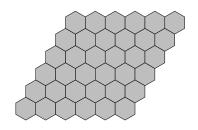


We tile a lozenge with hexagons.





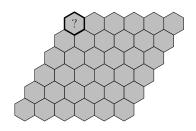
We tile a lozenge with hexagons.



Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

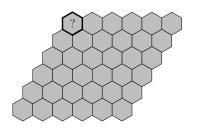
We tile a lozenge with hexagons.



Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

We tile a lozenge with hexagons.



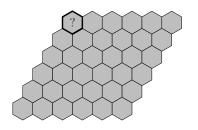
Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

A given hexagon is colored:

 \bullet red with probability p,

We tile a lozenge with hexagons.

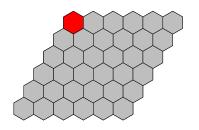


Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.

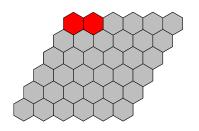


Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.

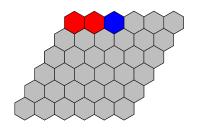


Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.

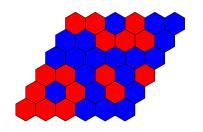


Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.

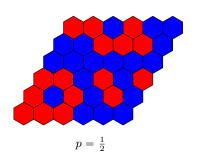


Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.

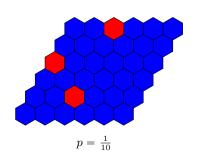


Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.

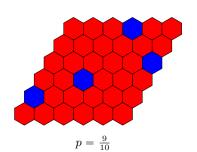


Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.

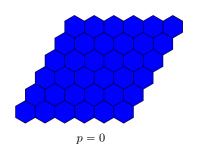


Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.



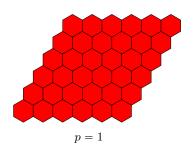
Parameter: $0 \le p \le 1$.

$$0 \leqslant p \leqslant 1$$

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.



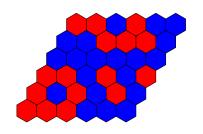
Parameter: $0 \le p \le 1$.

$$0 \leqslant p \leqslant 1$$

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.

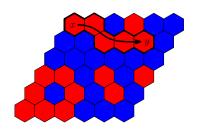


Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- \bullet red with probability p,
- blue with probability 1-p.

We tile a lozenge with hexagons.



Parameter: $|0 \le p \le 1|$.

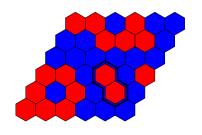
Random coloring of the hexagons:

A given hexagon is colored:

- red with probability p,
- blue with probability 1-p.

Red path: a path made of red hexagons.

We tile a lozenge with hexagons.



Parameter: $|0 \le p \le 1|$.

Random coloring of the hexagons:

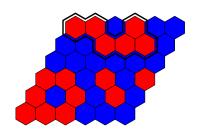
A given hexagon is colored:

- red with probability p,
- blue with probability 1-p.

Red path: a path made of red hexagons.

Red Cluster: red connected component. "Island"

We tile a lozenge with hexagons.



Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

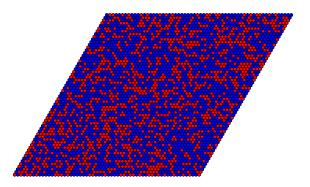
A given hexagon is colored:

- red with probability p,
- blue with probability 1-p.

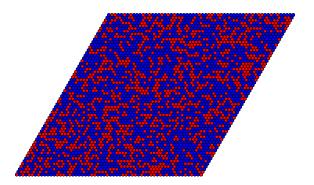
Red path: a path made of red hexagons.

Red Cluster: red connected component. "Island"

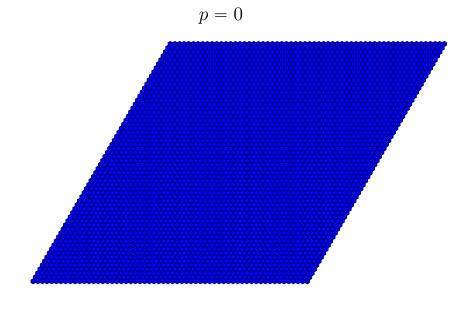
A porous stone?

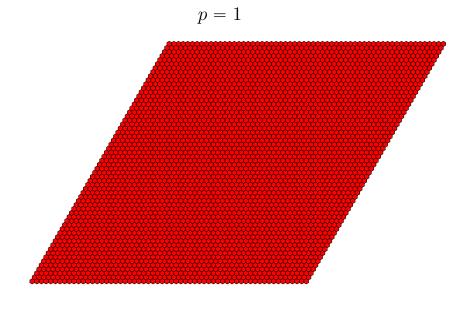


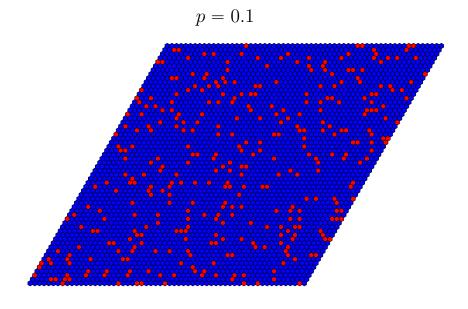
QUESTION 1:

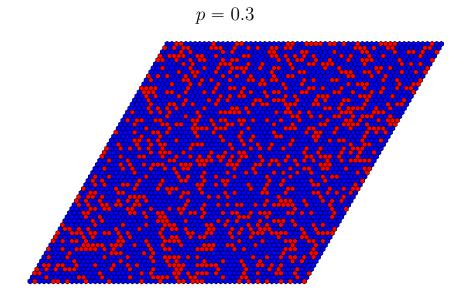


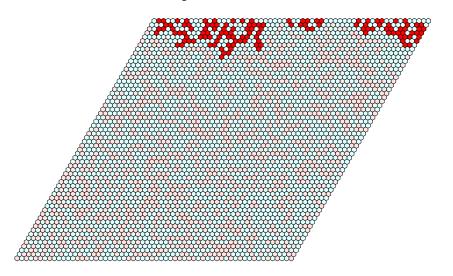
Is there a red path from top to bottom in a large lozenge?



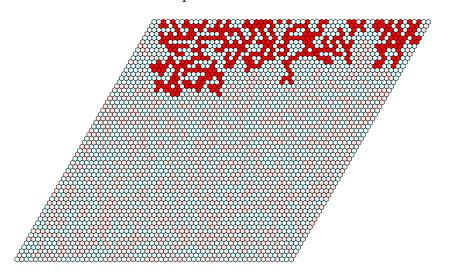




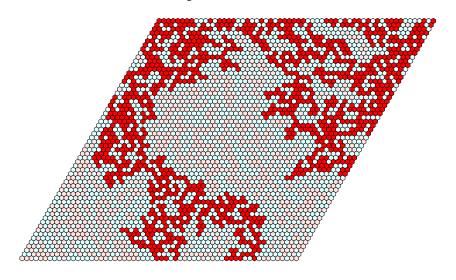




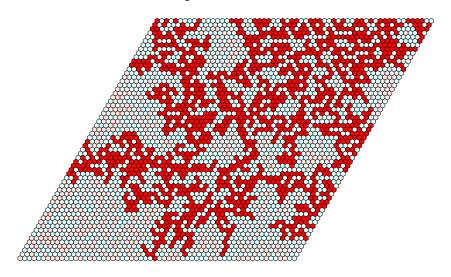
p = 0.45



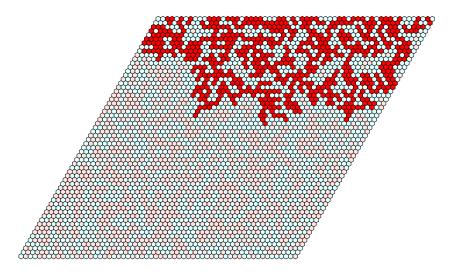
p = 0.5



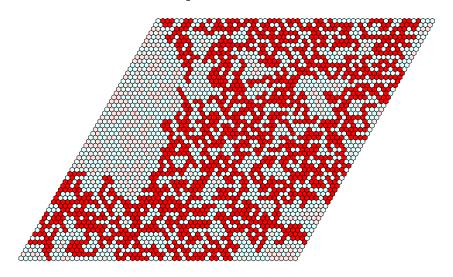
p = 0.5



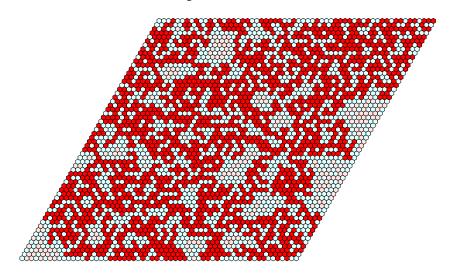
p = 0.5

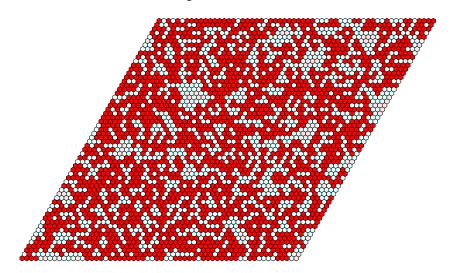


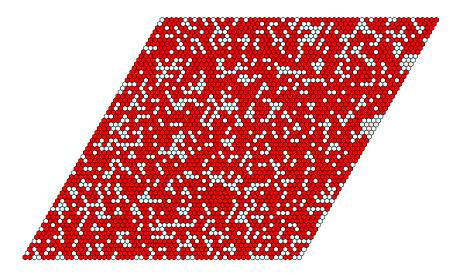
p = 0.5

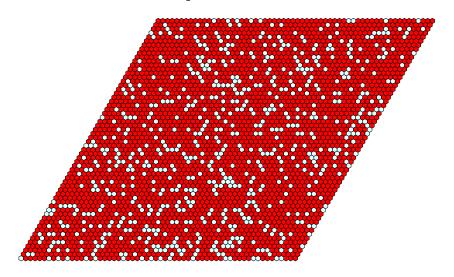


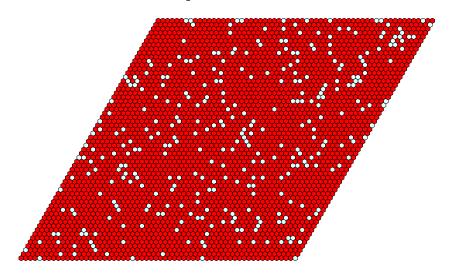
p = 0.55

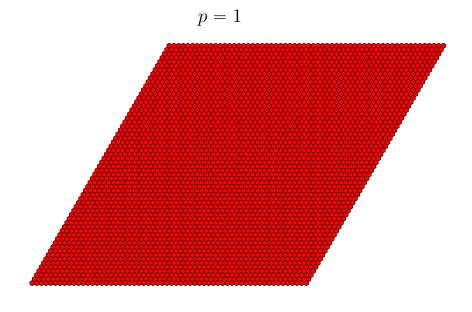


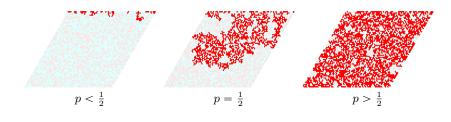


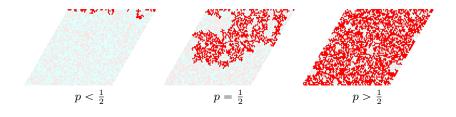












RIGOROUS ANSWER TO QUESTION 1

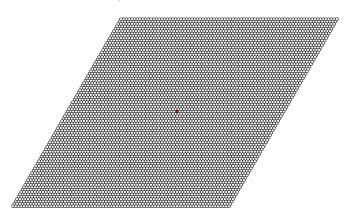
Theorem [Kesten, 1980]

For percolation with parameter p, we have

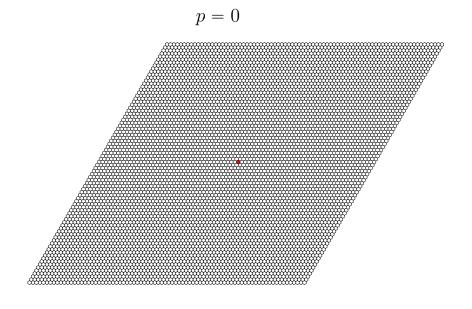
$$\lim_{n \to \infty} \mathbf{Prob}_p \left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right] = \begin{cases} 0 & \text{if } p < \frac{1}{2} \\ \frac{1}{2} & \text{if } p = \frac{1}{2} \\ 1 & \text{if } p > \frac{1}{2} \end{cases}$$

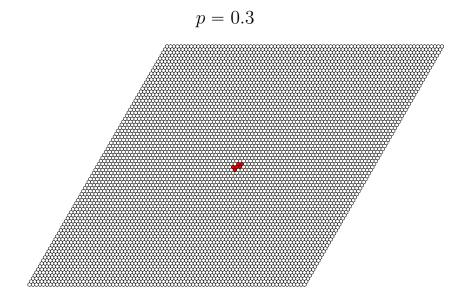
A forest?

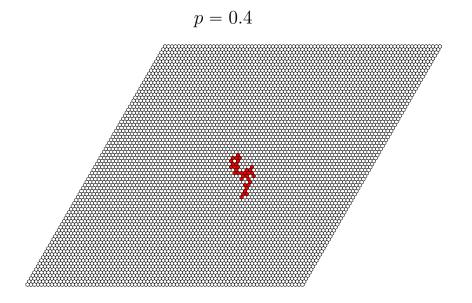
QUESTION 2:

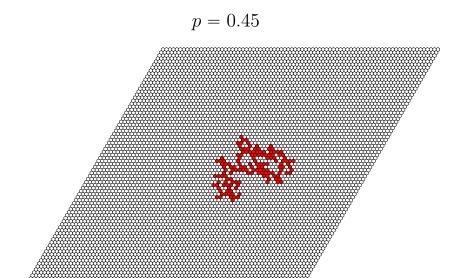


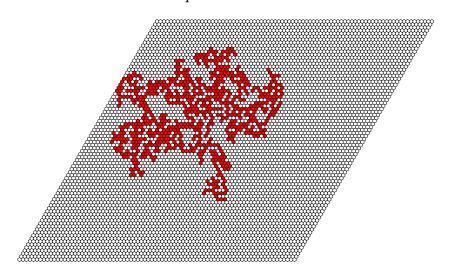
How far can we go when starting from a single hexagon in the center?



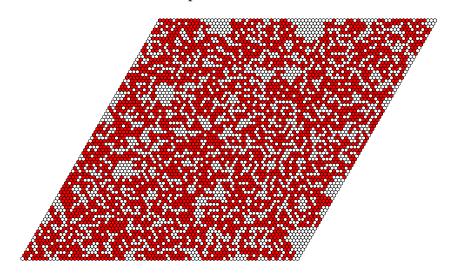




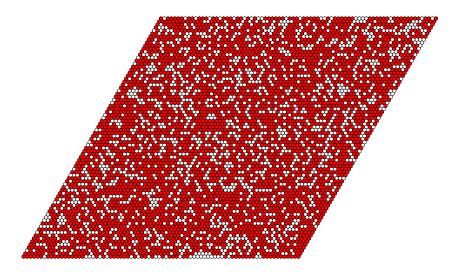


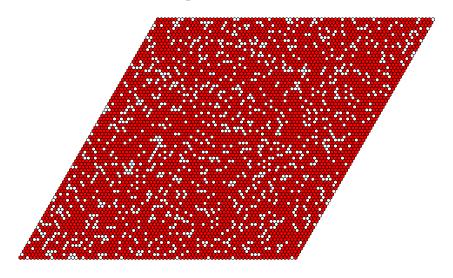


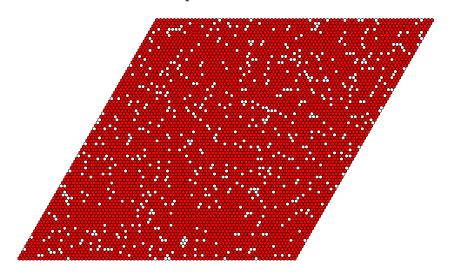
p = 0.6

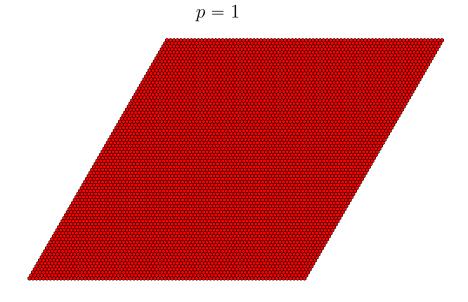


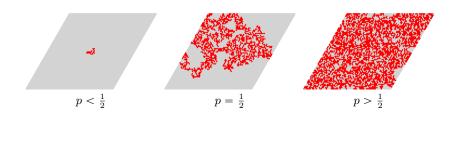
p = 0.7

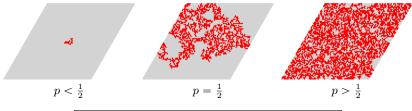










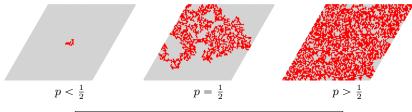


Rigorous answer to Question 2

Theorem [Kesten, 1980]

For percolation with parameter p, we have

$$\mathbf{Prob}_{p}\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right] \left\{ \begin{array}{ll} \leqslant e^{-c(p)n} & \text{if } p < \frac{1}{2}, & \text{ [exponential decay]} \\ \\ \leqslant \frac{1}{n^{c(p)}} & \text{if } p = \frac{1}{2}, & \text{ [polynomial decay]} \\ \\ \geqslant c(p) & \text{if } p > \frac{1}{2}. & \text{ [uniform positivity]} \end{array} \right.$$



Rigorous answer to Question 2

Theorem [Kesten, 1980]

For percolation with parameter p, we have

$$\mathbf{Prob}_{p}\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}\right] \left\{ \begin{array}{ll} \leqslant e^{-c(p)n} & \text{if } p < \frac{1}{2}, & \text{ [exponential decay]} \\ \leqslant \frac{1}{n^{c(p)}} & \text{if } p = \frac{1}{2}, & \text{ [polynomial decay]} \\ \geqslant c(p) & \text{if } p > \frac{1}{2}. & \text{ [uniform positivity]} \end{array} \right.$$

Remark: For
$$p=\frac{1}{2}$$
, \mathbf{Prob}_p $\simeq \frac{1}{n^{5/48}}$ [Lawler, Schramm, Werner '02]

Percolation on hexagons.

Percolation on hexagons.

Percolation on \mathbb{Z}^d , $d\geqslant 2$.

Percolation on hexagons.

Percolation on \mathbb{Z}^d , $d \geqslant 2$.

Voronoi percolation in \mathbb{R}^d .

on hexagons.

Percolation on \mathbb{Z}^d , $d \geqslant 2$.

Voronoi percolation Boolean percolation in \mathbb{R}^d .

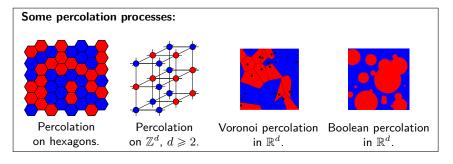
in \mathbb{R}^d .

on hexagons.

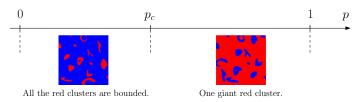
Percolation on \mathbb{Z}^d , $d \geqslant 2$.

Voronoi percolation Boolean percolation in \mathbb{R}^d .

in \mathbb{R}^d .



Phase transition (p = density of red points).



 p_c : critical parameter (depends on the model).