Multiple Choice 2.1 True or false? Motivate your answers.

Consider the ODE $y''(x) - \sigma^2 y(x) = 0$, where $\sigma > 0$. Then:

		True	False
(a)	It has at least one bounded solution.		
(b)	If y is a nonzero solution, then y is unbounded.		
(c)	For any two values $a, b \in \mathbb{R}$, there is only one solution with $y(0) = a$ and $y(1) = b$.		
(d)	There is no solution which is surjective from \mathbb{R} to \mathbb{R} .		

Multiple Choice 2.2 Choose the correct statement(s). Motivate your answers.

A particular solution of the ODE $y'' + 2y' + y = e^{-x}$ is:

(a)	ke^{-x} for some constant k.	
(b)	kxe^{-x} for some constant k .	
(c)	$kx^2 e^{-x}$ for some constant k .	
(d)	ke^{-x^2} for some constant k.	

Exercise 2.1 A piece of mass (of mass m) connected to a coil spring that can stretch along its length. If k > 0 denotes the spring constant, the equation of motion of such system is given, according to Hooke and Newton's laws, by

$$m\ddot{x}(t) = -kx(t),\tag{\dagger}$$

where x = x(t) denotes the position in time of the piece of mass along the vertical direction. Call $\omega = \sqrt{\frac{k}{m}}$. Find the solution of (†):

(a) with initial position x(0) = 1 and initial velocity $\dot{x}(0) = 2\omega$.

- (b) with initial position x(0) = 1 and final position $x(\frac{\pi}{2\omega}) = 1$.
- (c) Is is possible to find a solution so that $x(t) \to -\infty$ as $t \to +\infty$?

Exercise 2.2 It is observed that the populations of certain species of bacteria grow, when there is plenty of food and space, with a rate proportional to the number of

present individuals. So, if y(t) represents the size of the bacteria population with respect to time $t \ge 0$, it satisfies

$$\begin{cases} y'(t) = \kappa y(t) & \text{for } t > 0, \\ y(0) = y_0, \end{cases}$$
(\circ)

where y_0 represents the initial size of the population and $\kappa > 0$ is a constant determined by the biology of the bacteria in consideration.

- (a) Find the solution of the problem (\circ). Looking at the solution, can you guess what is this kind of growth called?
- (b) Suppose you are in a lab where the technology to observe the population delivers one picture per ε seconds, for some small $\varepsilon > 0$. Explain why (\circ) is replaced by

$$\begin{cases} \frac{y(t+\varepsilon) - y(t)}{\varepsilon} = \kappa y(t) & \text{for } t = 0, \varepsilon, 2\varepsilon, \dots \\ y(0) = y_0, \end{cases}$$
(\$\$

and find the solution of the problem (\diamond) .

(c) How does the solution to (\diamond) behave as $\varepsilon \to 0$?

Exercise 2.3 Consider the differential equation

$$xy' = 2y - 3xy^2 \qquad \text{for } x > 0,$$

in the unknown y = y(x).

- (a) Rewrite the equation using the change of variable $y = \frac{1}{u}$.
- (b) Solve the equation in the new variable u and then write the solution in the original variable y.
- (c) There is one solution that cannot be obtained with the procedure (a) & (b). What is it, and why?