D-INFK	Analysis II	ETH Zürich
Prof. Ö. Imamoglu	Exercise Sheet 10	Autumn 2020

Multiple Choice 10.1 Choose the correct statement. Motivate your answer.

Let $V : \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field and consider its *Jacobian matrix*, namely the 3×3 matrix of its 1st derivatives:

$$DV = \begin{pmatrix} \partial_{x_1}V_1 & \partial_{x_2}V_1 & \partial_{x_3}V_1 \\ \partial_{x_1}V_2 & \partial_{x_2}V_2 & \partial_{x_3}V_2 \\ \partial_{x_1}V_3 & \partial_{x_2}V_3 & \partial_{x_3}V_3 \end{pmatrix}.$$

Knowing that, in this matrix, there are three *distinct* coinciding pairs of elements, is, in general,

(a)	necessary, but not sufficient,	
(b)	sufficient, but not necessary,	
(c)	necessary and sufficient,	
(d)	neither necessary nor sufficient,	

for V to be conservative.

Multiple Choice 10.2 Choose the correct statement. Motivate your answer.

Let $V : \mathbb{R}^3 \to \mathbb{R}^3$ and V be as in the previous question.

Knowing that the matrix DV is symmetric, is

(a)	necessary, but not sufficient,	
(b)	sufficient, but not necessary,	
(c)	necessary and sufficient,	
(d)	neither necessary nor sufficient,	

for V to be conservative.

Exercise 10.1 In each of the following, find a parametrization of the curve γ and compute the line integral $\int_{\gamma} F \cdot d\vec{s}$.

- (a) F(x,y) = (x+y, x-y) and γ runs through the parabola $\{(x,y) \in \mathbb{R}^2 \mid y = x^2\}$ from the point (-1,1) to the point (1,1).
- (b) $F(x,y) = (0, xy^2)$ and γ runs through the half-circle $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 4, y \ge 0\}$ in counter-clockwise direction.

(c) $F(x,y) = (x^2 + y^2, x^2 - y^2)$ and γ runs trough the triangle with vertices (0,0), (1,0), (0,1) in counter-clockwise direction.

Exercise 10.2 In each of the following, determine whether the vector field $V : \mathbb{R}^3 \to \mathbb{R}^3$ admits a potential and compute the line integral $\int_{\gamma} V \cdot d\vec{s}$ along the curve $\gamma : [0, 1] \to \mathbb{R}^3$, $\gamma(t) = (t^3, t^2 + t, t)$.

(a)
$$V(x,y,z) = \begin{pmatrix} 2xy^3 \\ 3x^2y^2 + 2yz \\ y^2 \end{pmatrix}$$
, (b) $V(x,y,z) = \begin{pmatrix} x+z \\ x+y+z \\ x+z \end{pmatrix}$.

Exercise 10.3 The following vector field describes, according to the *Biot-Savart law*, the magnetic field generated by an infinitely long, constant-current electric wire displaced along the z-axis:

$$B(x,y,z) = \frac{\mu_0 I}{2\pi} \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} \quad \text{defined for } (x,y) \neq 0,$$

where μ_0 and I are, respectively, the magnetic constant and I the (also constant) current.

(a) Prove that it is

$$\frac{\partial}{\partial x_i} B_j = \frac{\partial}{\partial x_j} B_i \quad \forall i, j \in \{1, 2, 3\},$$

where we denoted $(x_1, x_2, x_3) = (x, y, z)$.

- (b) Consider the curves $\gamma_m : [0, 2\pi m] \to \mathbb{R}^3$, $\gamma_m(t) = (\cos(t), \sin(t), 0)$ for $m \in \mathbb{Z}$, and compute the line integrals $\int_{\gamma_m} B \cdot d\vec{s}$.
- (c) Does B admit a potential in $\mathbb{R}^3 \setminus \{z\text{-axis}\}$?