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Multiple Choice 8.1 True or False? Motivate your answers.

The function f : R2 → R given by

f(x, y) =

(x2 + y2) sin
(

1√
x2+y2

)
, if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

at the point (0, 0) is:
True False

(a) discontinuous � �

(b) continuous � �

(c) differentiable � �

(d) C1 (i.e. continuously differentiable). � �

Solution. It is
True False

(a) discontinuous � �

(b) continuous � �

(c) differentiable � �

(d) C1 (i.e. continuously differentiable). � �

We are going to show that f is differentiable, and hence continuous, at (0, 0) but not
of class C1. For (x, y) 6= (0, 0) the partial derivatives are

∂f

∂x
(x, y) = 2x sin

( 1√
x2 + y2

)
+ (x2 + y2) cos

( 1√
x2 + y2

)
· 2x
−2(x2 + y2) 3

2

= 2x sin
( 1√

x2 + y2

)
− x√

x2 + y2 cos
( 1√

x2 + y2

)
,

∂f

∂y
(x, y) = 2y sin

( 1√
x2 + y2

)
− y√

x2 + y2 cos
( 1√

x2 + y2

)
,

that are clearly continuous away from (0, 0). To see that f is differentiable at (0, 0)
we see that

∣∣∣∣∣f(x, y)− f(0, 0)
‖(x, y)‖

∣∣∣∣∣ =

∣∣∣∣∣∣
(x2 + y2) sin

(
1√
x2+y2

)
− 0

√
x2 + y2

∣∣∣∣∣∣ ≤
√
x2 + y2 (x,y)→(0,0)−−−−−−→ 0.
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which implies f is differentiable with df(0, 0) = (0, 0).

However, the partial derivatives of f are not continuous at (0, 0), since for x > 0 we
have

∂f

∂x
(x, 0) = 2x sin

( 1√
x2

)
− x√

x2
cos
( 1√

x2

)
= 2x sin

(1
x

)
− cos

(1
x

)
.

The term − cos( 1
x
) is divergent (x, 0)→ (0, 0). Consequently, ∂f

∂x
is not continuous at

(0, 0) and f is not of class C1.

Multiple Choice 8.2 Choose the correct statement. Motivate your answer.

Recall that a critical point of a differentiable function f : R2 → R is an x0 ∈ Rn so
that df(x0) = 0. At such point, the tangent plane to the graph of f is:

(a) not defined �

(b) horizontal (looking at R3 in the usual way with upward-pointing z-axis) �

(c) vertical (looking at R3 in the usual way with upward-pointing z-axis) �

(d) none of the above, in general. �

Solution. The correct answer is

(b) horizontal (looking at R3 in the usual way with upward-pointing z-axis) �
Indeed, (see also Exercise 8.1 below) the equation of the plane is just

z = f(x0) + df(x0) · (x, y) = f(x0)

which means that it is parallel to the x-y plane, and therefore horizontal.

Exercise 8.1 Let G = {(x, y, f(x, y)) : (x, y) ∈ R2} ⊂ R3 be the graph of the function

f : R2 → R, f(x, y) = e−(x2+y2−2x+3y+2).

(a) Find the equation of the tangent plane E to G at the point (0, 0, e−2), both in
Cartesian form, i.e. with an equation:

E = {(x, y, z) ∈ R3 : “equation in x, y, z”},

and in parametric form i.e. with a function:

ϕ : R2 → E ⊂ R3, ϕ(s, t) =
(
x(s, t), y(s, t), z(s, t)

)
.
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(b) Use a plotting software of your choice to verify that ϕ actually plots a plane
that is tangent to G as above.

(c) Find all the points in G where the tangent plane is parallel to the x-y plane
Π = {(x, y, 0) : (x, y) ∈ R2}.

Solution. Recall that, in general, the tangent plane for G at (x0, y0) is given by

E =
{

(x, y, A(x, y)) : (x, y) ∈ R2
}
,

where A is the affine approximation of f :

A(x, y) = f(x0, y0) + df(x0) · (x, y)

= f(x0, y0) + ∂

∂x
f(x0, y0) (x− x0) + ∂

∂y
f(x0, y0)(y − y0).

consequently, a paremetrization and a Cartesian equation E are

ϕ(s, t) = (s, t, A(s, t)), and z = A(x, y).

(a) The partial derivatives of f are

∂f

∂x
(x, y) = (−2x+ 2) f(x, y), ∂f

∂y
(x, y) = (−2y − 3) f(x, y),

consequently, we have df(0, 0) = (2e−2,−3e−2) and the affine approximation of
f is

A(x, y) = f(0, 0) + df(0, 0) · (x, y) = e−2 + 2e−2x− 3e−2y.

Thus, it is

ϕ(s, t) = (s, t, e−2 + 2e−2s− 3e−2t)

and

E = {(x, y, z) : z = e−2 + 2e−2x− 3e−2y}.

(b) This is left to the student.

(c) The tangent plane in (x0, y0) is parallel to Π if and only if A is constant, hence
if and only if df(x0, y0) ≡ 0. From the computation in (a), since f > 0 this
means that −2x0 + 2 = 0 and 2y0 − 3 = 0, i.e. (x0, y0) = (1,−3

2). Consequently,
E is parallel to Π at the point(

1,−3
2 , f(1,−3

2)
)

=
(
1,−3

2 , e
5
4
)
∈ G.
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Exercise 8.2 Consider the function

f : R2 → R, f(x, y) = ex sin(y).

(a) Compute the Taylor polynomials of 1st and 2nd order of f at (x0, y0) = (0, π2 );
approximate with each of them the value of f at (x1, y1) = (0, π2 + 1

4). Compare
the results approximating numerically the value of f(x1, y1) with a software of
your choice.

(b) Similarly as for the one variable case, one can prove that if a function is C2,
one can write

f(x) = f(x0) + df(x0) · (x− x0) +R1f(x, y),

where R1f is the rest, given by

R1f(x, y) = 1
2
∂2f

∂x∂x
(xs, ys) · (x− x0)2 + 1

2
∂2f

∂y∂y
(xs, ys) · (y − y0)2

+ ∂2f

∂x∂y
(xs, ys) · (x− x0)(y − y0) • (x0, y0)

• (x, y)

• (xs, ys)

where (xs, ys) =
(
x0 + s(x−x0), y0 + s(y− y0)

)
for some s ∈ [0, 1] (see e.g. Satz

7.5.2 of Struwe’s script).

With this information, quantify how precise in the linear approximation in the
ball B 1

4
(0, π2 ) by giving an upper bound for the corresponding error.

Solution. (a) The partial derivatives of f are f(x, y) = ex sin(y) sind

∂f

∂x
(x, y) = ex sin(y), ∂

∂x

∂f

∂x
(x, y) = ex sin(y), ∂

∂y

∂f

∂x
(x, y) = ex cos(y),

∂f

∂y
(x, y) = ex cos(y), ∂

∂x

∂f

∂y
(x, y) = ex cos(y), ∂

∂y

∂f

∂y
(x, y) = −ex sin(y).

Consequently, at (x0, y0) = (0, π2 ) ∈ R2 we have

∂f

∂x
(0, π2 ) = 1, ∂

∂x

∂f

∂x
(0, π2 ) = 1, ∂

∂y

∂f

∂x
(0, π2 ) = 0,

∂f

∂y
(0, π2 ) = 0, ∂

∂x

∂f

∂y
(0, π2 ) = 0, ∂

∂y

∂f

∂y
(0, π2 ) = −1.
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Since moreover f(0, π2 ) = 1 sowie, the taylor polynomials are

T1f(x, y) = f(x0, y0) + ∂f

∂x
(x0, y0) · (x− x0) + ∂f

∂y
(x0, y0) · (y − y0)

= 1 + x,

T2f(x, y) = T1f(x, y) + 1
2
∂2f

∂x∂x
(x0, y0) · (x− x0)2 + 1

2
∂2f

∂y∂y
(x0, y0) · (y − y0)2

+ ∂2f

∂x∂y
(x0, y0) · (x− x0)(y − y0)

= 1 + x+ 1
2x

2 − 1
2

(
y − π

2

)2
.

Evaluating them at (0, π2 + 1
4) gives

T1f(0, π2 + 1
4) = 1, T2f(0, π2 + 1

4) = 1− 1
2(1

4)2 = 31
32 = 0.96875.

The value approximated numerically by a program is

f(0, π2 + 1
4) = sin(π2 + 1

4) ≈ 0.96891,

so the approximation of T2 is relatively good.

(b) Since f(x, y) = T1f(x, y) +R1f(x, y), where the rest R1f is given by

R1f(x, y) = 1
2
∂2f

∂x∂x
(xs, ys) · (x− x0)2 + 1

2
∂2f

∂y∂y
(xs, ys) · (y − y0)2

+ ∂2f

∂x∂y
(xs, ys) · (x− x0)(y − y0) • (x0, y0)

• (x, y)

• (xs, ys)

where (xs, ys) :=
(
x0 + s(x−x0), y0 + s(y− y0)

)
for some s ∈ [0, 1]. To estimate

this rest, we see that

|∂2
xxf(x, y)|, |∂2

xy(x, y)|, |∂2fyy(x, y)| ≤ ex,

since |sin x| ≤ 1 und |cosx| ≤ 1. So for (x0, y0) = (0, π2 ) and (x, y) ∈ B 1
4
(x0, y0)

we have |x− x0| ≤ 1
4 , |y − y0| ≤ 1

4 and x0 + s(x− x0) ≤ 1
4 , so

|R1(x, y)| ≤ 4 ·
(1

2e
1
4 ·
(1

4

)2)
= 1

8e
1
4 ≈ 0.1605.

Exercise 8.3 Compute the Taylor polynomials of the following functions at the given
point and of the given order.
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(a) f(x, y) = 1
1−xy , at (0, 0), 2n−th order with n ≥ 1.

(b) f(x, y) = arctan(x2y), at (0, 0), 2nd order.

(c) f(z) = log(|z|2 + 1) (z ∈ C ' R2), at z = 0, 2n−th order with n ≥ 1.

(d) f(x1, . . . , xn) = ∏n
i=1 xi, at x0 = (2, . . . , 2) 2nd order.

Solution. All the polynomials can be computed directly by working out each of the
partial derivatives; we try to give below some alternative methods. We denote with
Tnf the required polynomial.

(a) Recall that for |b| < 1 one has the geometric series formula: 1
1−b = ∑∞

n=0 b
n.

Consequently, we can write, as (x, y)→ (0, 0),

1
1− xy =

∑
n∈N

(xy)n =
N∑
n=0

(xy)n +
∞∑

n=N+1
(xy)n =

N∑
n=0

(xy)n + o(|(x, y)|2N),

consequently, it has to be, for every n ∈ N,

T2nf(x, y) = 1 +
n∑
k=1

(xy)k.

(b) Recall that arctan(t) = t + O(t3), so arctan(x2y) = x2y + O(x6y3) and in
particular

T2f(x, y) = 0.

(c) Recall that for any |t| < 1 we have

log(1 + t) =
∞∑
k=1

(−1)k−1

k
tk,

consequently |z| < 1

log(1 + |z|2) =
∞∑
k=1

(−1)k−1

k
|z|2k,

and thus for z = x+ iy ∈ C ' R2 we have

T2nf(z) =
n∑
k=1

(−1)k−1

k
|z|2k =

n∑
k=1

(−1)k−1

k
(x2 + y2)k.
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(d) Note that for any i 6= j we have

∂xi
f(x) =

∏
k 6=i

xk, ∂2
xi
f(x) = 0, ∂2

xi,xj
f(x) =

∏
k 6=i,j

xk,

hence, for 1 ≤ i 6= j ≤ n,

f(2) = 2n, ∂xi
f(2) = 2n−1, ∂2

xi,xj
f(2) = 2n−2,

Thus writing x0 = (2, . . . , 2) and y = x− x0 we have

T2f(x) = f(x0) + df(x0) · y + 1
2y · Hessf(x0) · y

= 2n + 2n−1
n∑
i=1

yi + 2n−2 ∑
1≤i<j≤n

yiyj.

(In the terms of order 2, we have a coefficient 1
2 in Taylor formula, but we have

two symmetric terms ∂i∂j and ∂j∂i for 1 ≤ i < j ≤ n. We combine this 2 terms
and end up with (1

2 + 1
2)∂2

xi,xj
f(2).)
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