Old exercise sheet

Ex 10.1
b) Povametisation of the half circle

$$
\begin{aligned}
& \gamma:[0, \pi] \rightarrow \mathbb{R}^{2}, t \mapsto 2 \cdot\binom{\cos (t)}{\sin (t)} \leftarrow \text { go for this one! } \\
& \hat{\gamma}:[-2,2] \rightarrow \mathbb{R}^{2}, t \mapsto\binom{-t}{\sqrt{4-t^{2}}}
\end{aligned}
$$

c) $F(x, y)=\binom{x^{2}+y^{2}}{x^{2}-y^{2}}$ has not polorwial as $\partial_{x} F_{2} \neq \partial_{y} F_{1}$

\rightarrow thus we cannot say that " $\int_{\gamma} F d s=0$ because 8 is closed".
Rather we have to evaluate the line integral!

Ex 10.2
a) $V(x, y, z)=\binom{2 x y^{3}}{3 x^{2} y^{2}+2 y z}$ has a potential $f(x, y, z)=x^{2} y^{3}+y^{2} \cdot z$
we car use the potential to calculate the line integral as

$$
\int_{8} V(s) \cdot d \vec{s}=f(8(1))-f(\gamma(0))=12
$$

Ex 10.3
using the affmition
b) You had to calculate $\int_{\gamma} B \cdot d s$ here, which gives you $\mu_{0} \cdot I \cdot m \neq 0$.
\Rightarrow the potential doesn't exist!!

Some of you calculated

$$
B=\frac{\mu_{0} I}{2 \pi} \cdot \frac{1}{x^{2}+y^{2}}\left(\begin{array}{c}
-y \\
x \\
c
\end{array}\right)^{\leftarrow}
$$

m. I $r \quad y$

$$
a_{x g}=B_{1}
$$

some of you calculated

$$
\begin{aligned}
& \begin{aligned}
\hat{g}(x, y, z) & =\frac{\mu_{0} I}{2 \pi} \int-\frac{y}{x^{2}+y^{2}} d x \\
& =-\frac{\mu_{0} \cdot I}{2 \pi} \cdot \arctan \left(\frac{x}{y}\right)+h(y, z)
\end{aligned} \\
& \frac{\partial \tilde{g}}{\partial y}=\frac{\mu_{0} I}{2 \pi} \cdot \frac{x}{x^{2}+y^{2}}+\underbrace{\partial_{y} h} \stackrel{!}{=} \frac{\mu_{0} \cdot I}{2 \pi} \cdot \frac{x}{x^{2}+y^{2}} \\
& \stackrel{!}{=} 0 \rightarrow h \text { is unimportant } \\
& \text { constant as } \partial_{z} h=0 \text {, as well }
\end{aligned}
$$

The reason why this doesn't work is that the polertial cannot be defined for $y=0$! (everywhere else, it just works fine)

$$
\begin{aligned}
\ln [1]= & f\left[x_{-}, y_{-}\right]=\operatorname{ArcTan}[x / y] \\
& P \operatorname{Plot} 3 D[f[x, y],\{x,-2,2\},\{y,-2,2\}]
\end{aligned}
$$

Out (1) $=\operatorname{ArcTan}\left[\frac{x}{y}\right]$

Note that g is indeed a potential of B for stoushaped domains which do not include $y=0$ and $z=0$!
c) As $\oint_{8} B \cdot d \vec{s} \neq 0$ (so the integral over the closed path 8 is not zero) we know that there carnot be a poterivial on $\mathbb{R}^{3} \backslash\{z$-axis $\}$

$$
(\rightarrow \text { Thy 3.1! })
$$

Reursion: Fubini's theorem
Theorem (Fubmi)
The order of integration can be swapped

The order of integration can be swapped

$$
\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d x d y=\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x, y) d y d x \quad(f a r n=2)
$$

if the function is integrable \& contmuas on its domain.

Example:

$$
f(x, y)=x \cdot \exp (y) \text { on } Q=[0,2] \times[0,1]
$$

a) w.r.t x at first

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2} x \cdot \exp (y) d x d y & =\int_{0}^{1}\left[\frac{x^{2}}{2} \cdot \exp (y)\right]_{x=0}^{2} d y \\
\text { b) w.r.t. } y \text { first } & =\int_{0}^{1} 2 \exp (y)=2 e-2 \\
\int_{0}^{2} \int_{0}^{1} x \cdot \exp (y) d y d x & =\int_{0}^{2}[x \cdot \exp (y)]_{y=0}^{1} d x \\
& =\int_{0}^{2}(e-1) x d x \\
& =\left[\frac{(e-1) x^{2}}{2}\right]_{0}^{2}=2 e-2
\end{aligned}
$$

Double integral aver gerwal regions (Corollary 3.6.1)

$$
\int_{a(x)}^{b(x)} \int_{c(y)}^{d(y)} f(x, y) d x d y=\int_{2}^{2} \int_{2}^{2} f(x, y) d y d x+\ldots
$$

Recipe: 1.a) Draw the domain (if you are given a domain defied wa functions)
1.b) Determine the equation of the functions (if the domain is drawn)
\rightarrow Rewrite the equations (if you want to swap order of integration)

$$
y=f(x) \quad \Leftrightarrow \quad x=g(y)
$$

2) Find the intersection pants of the functions
3) Write down the integral \& evaluate

Examples:
i) $f(x, y)=x+y$ on D, the upper half disk with radius 3 .

1. Equation of circle: $y^{2}+x^{2}=9$

$$
\begin{aligned}
\Rightarrow y_{0} & =+\sqrt{9-x^{2}}, \quad y_{1}=0, \\
x_{0} & =-3, \quad x_{1}=+3
\end{aligned}
$$

2. Intersection points: $(-3,0),(3,0)$
3. $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} x+y d y d x=\int_{-3}^{3}\left[x y+\frac{1}{2} y^{2}\right]_{0}^{\sqrt{9-x^{2}}} d x$

$$
\begin{aligned}
& =\int_{-3}^{3} x \cdot \sqrt{9-x^{2}}+\frac{1}{2}(9-x)^{2} d x \\
& =\ldots=18
\end{aligned}
$$

swap order of integration (first w.r.t x)

1. $x_{2}=-\sqrt{9-y^{2}}, x_{3}=+\sqrt{9-y^{2}}$

$$
y_{2}=0, y_{3}=3
$$

2. Intersection point $(0,3),(\pm 3,0)$
3. $\quad \int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{+\sqrt{9-y^{2}}} x+y d x d y=\int_{0}^{3}\left[\frac{1}{2} x^{2}+x \cdot y\right]_{-\sqrt{9-y^{2}}}^{+\sqrt{9-y^{2}}} d y$

$$
\begin{gathered}
=\int_{0}^{3} \frac{1}{2}\left(9-y^{2}\right)+y \cdot \sqrt{9-y^{2}}-\frac{1}{2}\left(9-y^{2}\right)+y \cdot \sqrt{9-y^{2}} d y \\
3
\end{gathered} \quad 1=u^{2}
$$

$$
\begin{aligned}
& =\int_{0}^{1} \frac{\pi}{2}\left(y-y^{2}\right)+y-x-y^{-}-\frac{1}{2}\left(y-y^{2}\right)+y \cdot x-y-d y \\
& =2 \int_{0}^{3} y \sqrt{9-y^{2}} d y \quad \quad \quad u=y^{2} \\
& =\int_{0}^{1} \sqrt{9-u} d u \\
& =\left[-\frac{2}{3}(9-u)^{\frac{3}{2}}\right]_{0}^{9}=\frac{2}{3} \cdot 9^{\frac{3}{2}}=18
\end{aligned}
$$

The integration can be uscualised as integration in \mathbb{R}^{3} where we cut ow function with planes and integrate ow the mterechion of aw function with this pone:

ii) Draw the domain enclosed by $g(x)=6-x^{2}$ and $h(x)=x^{2}-2$ and give the coovdinates of the intersection points!

- Intersection pants:

$$
\begin{gathered}
x^{2}-2=6 \cdot x^{2} \\
\Leftrightarrow 2 x^{2}=8 \quad \rightarrow x_{1,2}= \pm 2 \\
\left(x_{1}, y_{1}\right)=(2,2),\left(x_{2}, y_{2}\right)=(-2,2)
\end{gathered}
$$

Write down how you would integrate a function $f(x, y)$ over this domain, integrating both wist x and y fives :
integrating both wist x and y first:

- first wir.t $y: \rightarrow$ this is quite easy as ow boundary functions

$$
\int_{-2}^{2} \int_{x^{2}-2}^{6-x^{2}} f(x, y) d y d x
$$ are given on toms of x

- first w.r.t. x :

1. rewriting the equations:

$$
\begin{aligned}
& y_{1}=x^{2}-2 \Leftrightarrow x_{1,2}= \pm \sqrt{y+2} \\
& y_{2}=6-x^{2} \Leftrightarrow x_{3,4}= \pm \sqrt{6-y}
\end{aligned}
$$

2. Intosection points:

$$
\begin{array}{ll}
\cdot x_{1}=x_{2} \Rightarrow(x, y)=(0,-2) & \cdot x_{2}=x_{4} \Rightarrow(x, y)=(-2,2) \\
\cdot x_{1}=x_{3} \Rightarrow(x, y)=(2,2) & \cdot x_{3}=x_{4} \Rightarrow(x, y)=(0,6)
\end{array}
$$

3. Integral

$$
\int_{-2}^{2} \int_{-\sqrt{y+2}}^{\sqrt{y+2}} f(x, y) d x d y+\int_{2}^{6} \int_{-\sqrt{6-y}}^{+\sqrt{6-y}} f(x, y) d x d y
$$

Exerase sheet

MC 11.1
curl: $\quad h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad \operatorname{covl}(h)=\nabla \times h=\underbrace{\left(\begin{array}{l}d_{1} \\ d_{2} \\ \partial_{3}\end{array}\right) \times\left(\begin{array}{l}h_{1} \\ h_{2} \\ h_{3}\end{array}\right)}_{\text {cross product }}=\left(\begin{array}{l}\left(\begin{array}{l}\partial_{2} h_{3}-\partial_{3} h_{2} \\ \partial_{1} h_{1}-\partial_{1} h_{3} \\ \partial_{1} h_{2}-\partial_{2} h_{1}\end{array}\right)\end{array}\right.$
gradient: $k: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad \operatorname{grod}(k)=\nabla \cdot k=\left(\begin{array}{l}\partial_{1} k \\ \partial_{2} \\ \partial_{3} k\end{array}\right) \quad \nabla \cdot k: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$!

MC 11.2
\rightarrow Theorem 3.5
$E x 11.1-11.3$
Use what we discussed!

