Lösung Serie 5

Abgabetermin Mittwoch, 28.10.2020 um 12:00 Uhr.

MC-Aufgaben

1. Durch zweifache Anwendung der Regel von Bernoulli-de l'Hôpital folgt

$$\lim_{x \to 1} \frac{x^3 + x - 2}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{3x^2 + 1}{2x - 3} = \lim_{x \to 1} \frac{6x}{2} = 3.$$

Stimmt diese Überlegung?

- (a) Ja.
- (b) Nein, da das Zählerpolynom jeweils einen höheren Grad als das Nennerpolynom hat.
- (c) Nein, da Zähler und Nenner des ersten Bruchs für $x \to 1$ nicht beide gegen 0 streben.
- $\sqrt{}$ (d) Nein, da Zähler und Nenner des zweiten Bruchs für $x \to 1$ nicht beide gegen 0 streben.
 - (e) Nein, da die beiden ersten Brüche keine auf ganz ℝ definierte Funktion beschreiben.

Die Regel von Bernoulli-de l'Hôpital ist anwendbar, wenn sowohl der Zähler als auch der Nenner beide gegen 0 (oder beide gegen ∞ , s. später in der Vorlesung) streben. Für x=1 gilt $x^3+x-2=0$ und $x^2-3x+2=0$. Damit ist die Regel von de l'Hôpital auf den ersten Bruch anwendbar und das erste "=" stimmt. Für den zweiten Bruch sind dagegen die Voraussetzungen nicht erfüllt, denn, denn der Nenner hat an der Stelle 1 den Wert -1 und der Zähler den Wert 4. Vielmehr gilt:

$$\lim_{x \to 1} \frac{x^3 + x - 2}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{3x^2 + 1}{2x - 3} = \frac{3 + 1}{2 - 3} = -4.$$

2. Bestimmen Sie das globale Maximum der Funktion $f: [0,\pi] \to \mathbb{R}, \ x \mapsto \sin(2x) + 2\sin(x)$.

- (a) 2.61
- (b) 1.73

$$\sqrt{}$$
 (c) $\frac{3\sqrt{3}}{2}$

(d)
$$\frac{3\sqrt{2}}{2}$$

Die Ableitung von f ist

$$f'(x) = 2\cos(2x) + 2\cos x = 2(\cos^2 x - \sin^2 x + \cos x) =$$
$$= 2(\cos^2 x - (1 - \cos^2 x) + \cos x) = 2(2\cos^2 x + \cos x - 1).$$

Dabei wurden die Relationen

$$\cos(2x) = \cos^2 x - \sin^2 x$$
 und $\sin^2 x = 1 - \cos^2 x$

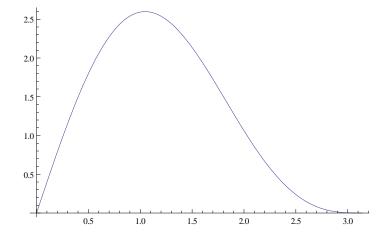
benützt. Nullsetzen der Ableitung f'(x) liefert

$$\cos x = \frac{-1 \pm 3}{4},$$

also $\cos x=\frac{1}{2}$ oder $\cos x=-1$, und daher (in unserem Intervall $[0,\pi]$) $x=\frac{\pi}{3}$ oder $x=\pi$. Der Randpunkt x=0 ist auch eine lokale Extremalstelle. Die Funktionswerte von f sind

$$f(0) = 0, \ f(\frac{\pi}{3}) = \frac{3\sqrt{3}}{2}, \ f(\pi) = 0,$$

also ist $\frac{3\sqrt{3}}{2}$ das globale Maximum. Diese Abbildung zeigt den Graphen der Funktion f:



3. Sei

$$f: [0,6] \to \mathbb{R}$$
$$x \mapsto 2x^3 - 15x^2 + 24x.$$

Welche der folgenden Aussagen trifft zu?

- $\sqrt{}$ (a) 1 und 4 sind lokale Extremalstellen.
 - (b) 11 ist das globale Maximum von f auf [0,6].
- $\sqrt{}$ (c) 6 ist eine globale Maximalstelle von f auf [0,6].
- $\sqrt{}$ (d) $f(x) \ge -16$ für alle $x \in [0, 6]$.

Die Ableitung von f ist

$$f'(x) = 6x^2 - 30x + 24 = 6 \cdot (x^2 - 5x + 4) = 6 \cdot (x - 1)(x - 4).$$

Nullsetzen der Ableitung liefert

$$f'(x) = 6 \cdot (x-1)(x-4) = 0.$$

Daraus ergibt sich x = 1 oder x = 4. Da

$$f'(x) > 0$$
 für $x \in (0,1)$

$$f'(x) < 0 \text{ für } x \in (1,4)$$

$$f'(x) > 0$$
 für $x \in (4,6)$,

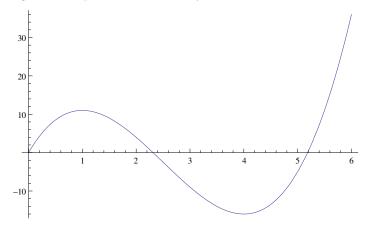
ist x=1 eine lokale Maximalstelle und x=4 eine lokale Minimalstelle (d.h. 1 und 4 sind lokale Extremalstellen). Die Randpunkte x=0 und x=6 des Definitionsbereichs sind auch lokale Extremalstellen. Die Funktionswerte von f in diesen Punkte sind

$$f(0) = 0$$
, $f(1) = 11$, $f(4) = -16$, $f(6) = 36$.

Daher haben wir:

- x = 6 ist die globale Maximalstelle und 36 das globale Maximum;
- x = 4 ist die globale Minimalstelle und -16 das globale Minimum (und also $f(x) \ge -16$ für alle $x \in [0, 6]$);
- x = 1 ist eine lokale Maximalstelle und 11 ein lokales Maximum;
- x = 0 ist eine lokale Minimalstelle und 0 ein lokales Minimum.

Diese Abbildung zeigt den Graphen der Funktion f:



4. Für alle ganzen Zahlen $n \ge 1$ gilt ...

$$\sqrt{}$$
 (a) $e^{-1/x} = o(x^n)$ für $x \to 0^+$

(b)
$$e^{1/x} = o(x^{-n}) \text{ für } x \to 0^+$$

$$\sqrt{\ }$$
 (c) $x^{-n} = o(e^{1/x})$ für $x \to 0^+$

$$\sqrt{}$$
 (d) $e^{\sqrt{\ln x}} = o\left(x^{1/3}\right)$ für $x \to +\infty$

(e)
$$\sin^2(x) \ln^3(x) = o(\ln^3(x))$$
 für $x \to +\infty$

Die richtigen Antworten sind (a), (c) und (d).

Für (a) betrachte man, dass für alle $n \in \mathbb{N}_0$ und y > 0 ist $e^y > \frac{y^{n+1}}{(n+1)!}$. Insbesondere, für alle x>0 haben wir auch $e^{\frac{1}{x}}>\frac{1}{(n+1)!\cdot x^{n+1}}$ (Setze $y=\frac{1}{x}$). Daraus folgt,

$$\frac{e^{-1/x}}{x^n} < (n+1)! \cdot x, \quad \text{für } x > 0.$$

Aus dieser Ungleichung ergibt sich, dass $0 \leq \lim_{x \to 0^+} \frac{e^{-1/x}}{x^n} \leq (n+1)! \lim_{x \to 0^+} x = 0$. Für (c), mit dem Variablentransformation $x \mapsto \frac{1}{x}$ wird die Aussage äquivalent zu $x^n = o(e^x)$ für $x \to \infty$. Dies wurde in der Vorlesung bewiesen.

Für (d) gilt $\lim_{x\to\infty} \frac{e^{\sqrt{\ln x}}}{x^{1/3}} = \lim_{x\to\infty} e^{\sqrt{\ln x} - (1/3)\ln(x)} = 0$, da $\sqrt{\ln(x)} = o(\ln(x))$ für $x\to\infty$. (b) ist falsch, denn es gilt $e^{1/x} > \frac{1}{n! \cdot x^n}$ für alle $n \in \mathbb{N}_0$ und x > 0. Somit ist, wenn er existiert,

$$\lim_{x \to 0^+} \frac{e^{1/x}}{x^{-n}} \ge \frac{1}{n!}.$$

(e) ist falsch, denn $\frac{\sin^2(x)\ln^3(x)}{\ln^3(x)} = \sin^2(x)$ und folglich konvergiert der Bruch nicht.

Offene Aufgaben

5. Berechnen Sie mit Hilfe der Bernoulli-de l'Hôpital-Regel die folgenden Grenzwerte:

(a)
$$\lim_{x\to 0} \frac{1+\sin(x)-\cos(x)}{\tan x}$$
;

(b)
$$\lim_{x \to 1} \frac{\arctan \frac{1-x}{1+x}}{1-x};$$

(c)
$$\lim_{x \to 0} \frac{\left(\frac{1}{\cos^2(x)} - \cos(x)\right)^2}{x \cos(x) - \sin(x)}$$
.

(d)
$$\lim_{x \to 0} \frac{e^{x^2 - 4x} - 1}{2x^2 - 8x}$$

(e)
$$\lim_{x \to 1} \frac{\arctan(x) - \frac{\pi}{4}}{\tan(\pi x/4) - 1}$$

(f)
$$\lim_{x \to +\infty} \frac{x^2 - 5}{x \ln^2(x)}$$

Lösung:

(a)
$$\lim_{x\to 0} \frac{1+\sin x - \cos x}{\tan x} \stackrel{\text{B-H}}{=} \lim_{x\to 0} \frac{\cos x + \sin x}{1+\tan^2 x} = 1$$

(b) Man bemerke zunächst, dass $\lim_{t\to 0} \frac{\arctan t}{t} \stackrel{\text{B-H}}{=} \lim_{t\to 0} \frac{1}{1+t^2} = 1$. Somit haben wir also

$$\lim_{x \to 1} \frac{\arctan \frac{1-x}{1+x}}{1-x} = \lim_{x \to 1} \frac{\arctan \frac{1-x}{1+x}}{\frac{1-x}{1+x}} \frac{1}{1+x} = 1 \cdot \frac{1}{2} = \frac{1}{2}.$$

(c)

$$\begin{split} \lim_{x \to 0} \frac{\left(\frac{1}{\cos^2 x} - \cos x\right)^2}{x \cos x - \sin x} &\stackrel{\text{B-H}}{=} \lim_{x \to 0} \frac{2\left(\frac{1}{\cos^2 x} - \cos x\right)\left(\frac{-2}{\cos^3 x}(-\sin x) + \sin x\right)}{\cos x - x \sin x - \cos x} \\ &= \lim_{x \to 0} \frac{-2\left(\frac{1}{\cos^2 x} - \cos x\right)\left(\frac{2}{\cos^3 x} + 1\right)}{x} \\ &\stackrel{\text{B-H}}{=} \lim_{x \to 0} -2\left(\left(\frac{2\sin x}{\cos^3 x} + \sin x\right)\left(\frac{2}{\cos^3 x} + 1\right) + \left(\frac{1}{\cos^2 x} - \cos x\right)\left(\frac{6\sin x}{\cos^4 x}\right)\right) \\ &= 0 \end{split}$$

(d)
$$\lim_{x \to 0} \frac{e^{x^2 - 4x} - 1}{2x^2 - 8x}$$
 $\stackrel{0}{\overset{0}{=}}$ $\lim_{B \to H} \frac{(2x - 4)e^{x^2 - 4x}}{4x - 8} = \frac{1}{2}$.

(e)
$$\lim_{x \to 1} \frac{\arctan(x) - \frac{\pi}{4}}{\tan(\pi x/4) - 1}$$
 $\stackrel{\underline{0}}{=}$ $\lim_{x \to 1} \frac{\frac{1}{x^2 + 1}}{(\pi/4) \sec^2(\pi x/4)} = \frac{1}{\pi}$.

6. (a) Bestimmen Sie die Werte der Konstanten $a \in \mathbb{R}$ und $b \in \mathbb{R}$ so, dass

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto ax^2 + bx$$

im Punkt (1,2) ein globales Maximum hat.

(b) Seien $a,b\in\mathbb{R}$ so, dass a< b. Bestimmen Sie in Abhängigkeit von a und b das Maximum der Funktion

$$f(x) = 2x^3 - 9x^2 + 12x - 5$$

auf dem Intervall [a, b].

Lösung:

(a) Es muss folgendes gelten:

$$f(1) = a + b = 2$$

$$f'(1) = 2a + b = 0$$

$$f''(1) = 2a < 0$$

Aus den ersten beiden Gleichungen folgt a = -2 (< 0) und b = 4. Somit hat $f(x) = -2x^2 + 4$ ein globales Maximum in (1,2).

(b) Das Maximum auf dem Intervall [a,b] wird entweder am Rand angenommen, also in a oder b, oder in einem kritischen Punkt (d.h. f'(x) = 0). Wir suchen also zuerst lokale Maxima der Funktion f auf der ganzen reellen Achse \mathbb{R} . Man hat

$$f'(x) = 6x^2 - 18x + 12 = 6(x - 1)(x - 2),$$

also sind $x_0 = 1, x_1 = 2$ die kritischen Punkte. Weiter ist

$$f''(x) = 12x - 18,$$

also hat f in x_0 ein lokales Maximum und in x_1 ein lokales Minimum. Ausserdem sieht man, dass f auf dem Intervall $(-\infty, 1)$ monoton wachsend, auf (1, 2) monoton fallend, und auf $(1, \infty)$ monoton wachsend ist.

Der Wert von f an der Stelle x_0 ist $f(x_0) = f(1) = 0$. Man sucht weitere Punkte x mit $f(x) = f(x_0) = 0$. Durch Polynomdivision kriegt man

$$f(x) = (x-1)(2x^2 - 7x + 5) = 2(x-1)^2(x - \frac{5}{2}),$$

also ist $\frac{5}{2}$ die einzige andere Nullstelle von f.

Wir unterscheiden die folgenden Fälle:

- $b \le 1$, dann gilt max = f(b)
- $1 < b \le \frac{5}{2}$ und $a \le 1$, in diesem Fall max = f(1)
- $1 < b \le \frac{5}{2}$ und a > 1, hier gilt $\max = \max(f(a), f(b))$ $b > \frac{5}{2}$, dann gilt $\max = f(b)$

7. Die Hyperbolische Funktionen sinh und cosh sind wie folgt definiert:

$$\sinh: \mathbb{R} \longrightarrow \mathbb{R}, \sinh(x) = \frac{e^x - e^{-x}}{2},$$

$$\cosh : \mathbb{R} \longrightarrow \mathbb{R}, \cosh(x) = \frac{e^x + e^{-x}}{2}.$$

Beweisen Sie folgende Identitäten für alle $x \in \mathbb{R}$:

- (a) $\cosh^2(x) \sinh^2(x) = 1$
- (b) $\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$
- (c) $2\cosh^2\left(\frac{x}{2}\right) = \cosh(x) + 1$.

$L\"{o}sung:$

- (a) $\cosh^2 x = \frac{1}{4}(e^x + e^{-x})^2 = \frac{1}{4}(e^{2x} + 2e^x e^{-x} + e^{-2x}) = \frac{1}{4}(e^{2x} + 2 + e^{-2x})$, und analog $\sinh^2 x = \frac{1}{4}(e^{2x} 2 + e^{-2x})$, also folgt $\cosh^2 x \sinh^2 x = \frac{1}{4}(2 + 2) = 1$.
- (b) $\sinh x \cdot \cosh y = \frac{1}{4}(e^x e^{-x})(e^y + e^{-y}) = \frac{1}{4}(e^{x+y} + e^{x-y} e^{y-x} e^{-(x+y)})$, also folgt $\sinh x \cdot \cosh y + \sinh y \cdot \cosh x = \frac{1}{4}(2e^{x+y} 2e^{-(x+y)}) = \sinh(x+y)$.
- (c) $2\cosh^2\left(\frac{x}{2}\right) = 2\left(\frac{e^{x/2} + e^{-x/2}}{2}\right)^2 = 2\frac{e^x + 2 + e^{-x}}{4} = \cosh x + 1.$

$$2ye^x - (e^x)^2 = 1,$$

- 8. Für welche der untenstehenden Funktionen $g: \mathbb{R} \to \mathbb{R}$ gilt $g(x) = O(e^x)$ mit $x \to +\infty$ und für welche gilt $e^x = O(g(x))$ mit $x \to +\infty$?
 - (a) $q(x) = e^{x+4}$;
 - (b) $g(x) = e^x + 17x^{17}$;
 - (c) $q(x) = e^{x^2}$;
 - (d) $q(x) = 200e^{\frac{1}{x^3}}$;
 - (e) $q(x) = x^x$.

Lösung:

(a)
$$\lim_{x \to +\infty} \frac{e^{x+4}}{e^x} = e^4 \text{ und } \lim_{x \to +\infty} \frac{e^x}{e^{x+4}} = e^{-4},$$

also $g(x) = O(e^x)$ und $e^x = O(g(x))$.

(b)
$$\lim_{x \to +\infty} \frac{e^x + 17x^{17}}{e^x} = 1 + 0 \text{ und } \lim_{x \to +\infty} \frac{e^x}{e^x + 17x^{17}} = \lim_{x \to +\infty} \frac{1}{1 + \frac{17x^{17}}{e^x}} = 1,$$

also $g(x) = O(e^x)$ und $e^x = O(g(x))$.

(c)
$$\lim_{x \to +\infty} \frac{e^{x^2}}{e^x} = \lim_{x \to +\infty} e^{x^2 - x} = +\infty \text{ und } \lim_{x \to +\infty} \frac{e^x}{e^{x^2}} = \lim_{x \to +\infty} e^{x - x^2} = 0,$$

also $e^x=O(g(x)).$ Wir haben benutzt, dass $\lim_{x\to +\infty}x^2-x=+\infty$ und $\lim_{x\to +\infty}x-x^2=-\infty.$

(d)
$$\lim_{x\to +\infty} \frac{200e^{\frac{1}{x^3}}}{e^x} = 0 \text{ und } \lim_{x\to +\infty} \frac{e^x}{200e^{\frac{1}{x^3}}} = +\infty,$$

also $g(x) = O(e^x)$.

(e) Beachte $x^x = e^{x \ln(x)}$ und somit

$$\lim_{x\to +\infty}\frac{e^{x\ln(x)}}{e^x}=\lim_{x\to +\infty}e^{x(\ln(x)-1)}=+\infty \text{ und } \lim_{x\to +\infty}\frac{e^x}{e^{x\ln(x)}}=\lim_{x\to +\infty}e^{x(1-\ln(x))}=0$$
 also $e^x=O(x^x).$