Dr. Menny Akka Ginosar

MC-Fragen Serie 9: Repetition

Einsendeschluss: Dienstag, der 24.11.2020 um 10:00 Uhr

- 1. Sei $T\colon V\to W$ eine lineare Abbildung zwischen den Vektorräumen V und W über dem Körper K. Welche der folgenden Aussagen treffen zu?
- (a) $\forall v, v' \in V \text{ und } \forall a \in K \text{ gilt: } T(av + v') = aT(v) + T(v')$
- (b) Es gilt T(0) = 0.
- (c) Für linear abhängige Vektoren $v_1,...,v_n \in V$ sind auch die Bilder $T(v_1),...,T(v_n)$ linear abhängig.
- (d) Es gilt: $\dim(V) = \dim(W)$.
- 2. Welche der folgenden Abbildungen sind linear?
- (a) $id\colon V \to V, v \mapsto v$, für einen Vektorraum V über einem Körper K
- (b) $f: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (x + y, 1 + z)$
- (c) $g: \mathbb{R}^3 \to \mathbb{R}^2, (x, y, z) \mapsto (xy, z)$
- (d) $h: \mathbb{R}[x]_3 \to \mathbb{R}[x]_3, p(x) \mapsto p'(x)$
- **3.** Für jeden Vektorraum V ist $|\operatorname{End}(V)| \geq 2$.
- (a) Wahr
- (b) Falsch
- 4. Die Abbildung $f \colon \mathbb{R} \to \mathbb{R}, x \mapsto ax + b$ für $a,b \in \mathbb{R}$ ist linear.
- (a) Wahr
- (b) Falsch

5. Für jede lineare Abbildung $T\colon K^n_{Spal}\to K^m_{Spal}$ existiert eine Matrix

$$A \in M_{m \times n}(K),$$

sodass Tx = Ax gilt für alle $x \in K^n$.

- (a) Wahr
- (b) Falsch
- **6.** Sei $V = \operatorname{Sp}(v_1, \dots, v_n)$ und $T \colon V \to W$ eine lineare Abbildung. Dann gilt $\operatorname{Im}(T) = \operatorname{Sp}(Tv_1, \dots, Tv_n)$.
- (a) Wahr
- (b) Falsch
- 7. Sei $T\colon V\to W$ eine lineare Abbildung zwischen den Vektorräumen V und W über dem Körper K. Welche der folgenden Aussagen treffen zu?
- (a) $Ker(T) = \{0\} \iff T \text{ ist injektiv.}$
- (b) Ker(T) ist ein Untervektorraum von V.
- (c) Falls V = W ist, so gilt $Ker(T) \cap Im(T) = \{0\}$.