Übungsserie 6

Abgabe bis zum 4. November

Bonuspunkte können in Aufgabe 1-4 erarbeitet werden

Aufgabe 1. Welche der folgenden Funktionen $f: \mathbb{R} \longrightarrow \mathbb{R}$ sind gleichmässig stetig? Überzeugen Sie sich zuerst davon, dass die jeweils gegebene Funktion stetig ist, und skizzieren Sie den Graphen.

- (a) $f(x) = \sqrt{|x|}$,
- (b) $f(x) = x^2$,
- (c) $f(x) = \min(\sqrt{|x|}, x^2),$
- (d) $f(x) = \inf_{k \in \mathbb{Z}} |x k|$, (aus Aufgabe 2 Serie 5)
- (e) $f(x) = \inf_{k \in \mathbb{Z}} |x k^2|$ (f) $f(x) = x \cdot \inf_{k \in \mathbb{Z}} |x k|$

Aufgabe 2. Sei I ein Intervall und $f:I\longrightarrow\mathbb{R}$ eine stetige, injektive Abbildung. Zeigen Sie, dass f streng monoton ist.

Aufgabe 3. Sei $D \subset \mathbb{R}$ eine Teilmenge. Eine Funktion $f: D \longrightarrow \mathbb{R}$ heisst Lipschitz-stetig, falls ein $L \ge 0$ existiert, so dass $|f(x) - f(y)| \le L|x - y|$ für alle $x, y \in D$ gilt.

- (a) Zeigen Sie, dass eine Lipschitz-stetige Funktion auch gleichmässig stetig ist.
- (b) Zeigen Sie, dass die Wurzelfunktion $[0,1] \longrightarrow \mathbb{R}$, gegeben durch $x \longmapsto \sqrt{x}$ zwar gleichmässig stetig, aber nicht Lipschitz-stetig ist.
- (c) Zeigen Sie, dass die Wurzelfunktion $[1,\infty) \longrightarrow \mathbb{R}$ Lipschitz-stetig und gleichmässig stetig ist.

Aufgabe 4. Finden Sie ein Beispiel einer Funktion oder begründen Sie, warum keine solche Funktion existieren kann.

- (a) Eine stetige Funktion $[0,1] \longrightarrow \mathbb{R}$, so dass N eine Teilmenge des Bildes ist.
- (b) Eine unbeschränkte, stetige Funktion auf einem beschränkten Intervall.
- (c) Eine unbeschränkte, stetige Funktion auf einem abgeschlossenen Intervall.
- (d) Eine unbeschränkte Funktion auf einem kompakten Intervall, die nur in einem einzigen Punkt unstetig ist.

- (e) Eine stetige Funktion auf einem Intervall, so dass die Funktion Bild Q hat.
- (f) Eine stetige Bijektion $(-1,1) \longrightarrow \mathbb{R}$. (Versuchen Sie, wenn möglich, keine trigonometrischen Funktionen zu benutzen. Wir wissen noch nicht, dass diese stetig sind.)
- (g) Eine stetige Bijektion $(0,1) \longrightarrow [0,1)$.

Aufgabe 5. Sei I ein Intervall und $f: I \longrightarrow \mathbb{R}$ eine monotone Abbildung, so dass für alle $a, b \in I$ und $\xi \in \mathbb{R}$ zwischen f(a) und f(b) ein $x \in \mathbb{R}$ zwischen a und b existiert, welches $f(x) = \xi$ erfüllt. Zeigen Sie, dass f stetig ist.

Aufgabe* 6. In dieser Übung möchten wir zeigen, dass es zu einer monotonen wachsenden Funktion f auf einem Intervall [a, b] mit a < b höchstens abzählbar viele Punkte geben kann, bei denen f nicht stetig ist (sogenannte Unstetigkeitsstellen). Gehen Sie dazu wie folgt vor: Sei $A \subseteq [a, b]$ die Menge der Unstetigkeitsstellen von f.

(a) Sei $x \in A$. Wir setzen

$$f_{-}(x) = \sup\{f(x') \mid x' \in [a, b], x' < x\}$$
 und $f_{+}(x) = \inf\{f(x') \mid x' \in [a, b], x' > x\}.$
Zeigen Sie, dass $f_{-}(x) < f_{+}(x)$ gilt. Wählen Sie anschliessend (Auswahlaxiom!) eine rationale Zahl $g(x)$ in $(f_{-}(x), f_{+}(x))$.

(b) Zeigen Sie, dass $g: x \in A \longrightarrow g(x) \in \mathbb{Q}$ injektiv ist und schliessen Sie die Aussage.