Serie 10

Auflösbare & nilpotente Gruppen, Sylowsätze, Symmetrische Gruppen

- 1. Sei S_n die symmetrische Gruppe mit $n \ge 2$.
 - (a) Sei $\sigma \in S_n$ ein k-Zykel mit $k \leq n$. Berechnen Sie $sgn(\sigma)$.
 - (b) Zeigen Sie, dass S_n von Transpositionen erzeugt wird.
- 2. (a) Sei $\sigma = \sigma_1 \cdots \sigma_m \in S_n$ das Produkt von m disjunkten Zykeln. Zeigen Sie, dass die Ordnung von σ das kleinste gemeinsame Vielfache der Längen der Zykel $\sigma_1, \ldots, \sigma_m$ ist.
 - (b) (**SAGE**): Schreiben Sie ein Verfahren, das berechnet wie viele Elemente in S_n von jeder Ordnung es gibt.
 - (c) Testen Sie Ihr Verfahren für S_7 . Versuchen Sie zum Beispiel folgende Fragen zu beantworten.
 - Wie viele Elemente der Ordnung 1, 2, 10 gibt es?
 - Was ist die grösste Ordnung eines Elementes?
 - Was ist die kleinste ganze Zahl für die es kein Element dieser Ordnung gibt?

Kommentieren Sie für welche n Sie denken, dass der Computer schneller ist als Sie, um diese Fragen zu beantworten.

- 3. (a) Seien $G_1 < G_2$ Gruppen, deren Ordnungen durch p teilbar sind. Sei H_1 eine p-Sylowuntergruppe von G_1 . Zeigen Sie, dass es eine p-Sylowuntergruppe H_2 von G_2 gibt, so dass $H_1 = H_2 \cap G_1$.
 - (b) Sei G eine Gruppe und H eine Untergruppe von G. Wir definieren den Normalisator $N_G(H)$ von H in G als

$$N_G(H) := \{ g \in G \mid gHg^{-1} = H \}.$$

Der Normalisator von H in G ist eine Untergruppe von G und die grösste Untergruppe von G, in der H normal ist.

Sei G eine endliche Gruppe und P eine p-Sylowuntergruppe von G. Zeigen Sie, dass für beliebige Untergruppen H von G gilt:

$$N_G(P) \subset H \implies H = N_G(H).$$

- 4. (a) Zeigen Sie, dass Untergruppen und Faktorgruppen auflösbarer Gruppen wieder auflösbar sind.
 - (b) Zeigen Sie, dass nilpotente Gruppen auflösbar sind.

 Hinweis: Verwenden Sie eine Induktion nach dem Nilpotenzgrad der Gruppe.
- 5. (a) Sei $n \ge 3$. Zeigen Sie, dass $[S_n, S_n] = A_n$.

 Hinweis: Sie dürfen ohne Beweis verwenden, dass A_n für $n \ge 5$ einfach ist.
 - (b) Bestimmen Sie einen Repräsentanten und die Kardinalität aller Konjugationsklassen in S_5 .
- 6. Gegeben seien zwei Gruppen N und H, sowie ein Gruppenhomomorphismus θ : $H \to \operatorname{Aut}(N)$, $h \mapsto \theta_h$ der Gruppe H in die Gruppe der Automorphismen von N. Wir definieren das semi-direkte Produkt von N und H (mittels θ) als das kartesische Produkt $N \times H$ zusammen mit der Verknüpfung

$$(n,h) \cdot (n',h') := (n \theta_h(n'), hh')$$

und schreiben dafür $N \rtimes_{\theta} H$. Wir bemerken, dass falls $\theta(h) = \operatorname{Id}_N$ für alle $h \in H$, so ist $N \rtimes_{\theta} H = N \times H$.

- (a) Zeigen Sie, dass $N \rtimes_{\theta} H$ eine Gruppe ist.
- (b) Zeigen Sie, dass $N \times \{1_H\}$ normal in $N \rtimes_{\theta} H$ ist.
- (c) Zeigen Sie, dass A_4 und $D_{2\cdot n}$ semi-direkte Produkte sind.