Serie 8

UNTERGUPPEN, ZENTRUM, KONJUGATION

- 1. Sei G eine Gruppe mit Einselement e und $H\subseteq G$ eine Teilmenge. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
 - (a) H ist eine Untergruppe von G,
 - (b) $e \in H$ und $a, b \in H \implies ab \in H$ und $a^{-1} \in H$,
 - (c) H ist eine Gruppe und $\iota: H \to G, h \mapsto h$ ist ein Gruppenhomomorphismus.

Ist H eine endliche Teilmenge, zeigen Sie, dass auch die folgende Aussage zu den obigen Aussagen äquivalent ist:

- (d) H ist nicht leer, und $a, b \in H \implies ab \in H$.
- 2. (a) Bestimmen Sie das Zentrum der symmetrischen Gruppe $Z(S_n)$ für alle $n \ge 2$.

(b) Zeigen Sie, dass
$$Z(GL_n(K)) = \left\{ \begin{pmatrix} t & & \\ & \ddots & \\ & & t \end{pmatrix} : t \in K^{\times} \right\}$$
 für alle $n \ge 1$.

(c) Zeigen Sie, dass
$$Z(\operatorname{SL}_n(K)) = \left\{ \begin{pmatrix} t & & \\ & \ddots & \\ & & t \end{pmatrix} : t \in K^{\times}, t^n = 1 \right\}$$
 für alle $n \geqslant 1$.

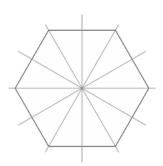
- 3. Sei G eine Gruppe mit Einselement e.
 - (a) Zeigen Sie, dass "konjugiert zueinander sein" eine Äquivalenz
relation auf G definiert.
 - (b) Sei $\varphi \in \text{Aut}(G)$. Zeigen Sie, dass $\varphi(Z(G)) = Z(G)$, $\varphi([G,G]) = [G,G]$ und für alle $g \in G$ gilt, dass $\text{ord}(\varphi(g)) = \text{ord}(g)$, wobei wir mit ord(g) die Ordnung von g bezeichnen.
 - (c) Folgern Sie, dass Z(G) und [G,G] invariant unter Konjugation sind.

Bemerkung: Eine Untergruppe H < G mit der Eigenschaft $\varphi(H) = H$ für alle $\varphi \in \operatorname{Aut}(G)$ heisst charakteristisch. Aus (b) folgt, dass Z(G) und [G,G] charakteristische Untergruppen von G sind. Können Sie weitere (möglicherweise triviale) Beispiele von charakteristischen Untergruppen finden?

- 4. Sei G eine Gruppe mit Einselement e.
 - (a) Zeigen Sie, dass falls $g^2 = e$ für alle $g \in G$ gilt, so ist G abelsch.
 - (b) Finden Sie eine nicht-abelsche Gruppe G mit der Eigenschaft, dass $g^3=e$ für alle $g\in G$ gilt.

Hinweis: Betrachten Sie die Heisenberg-Gruppe über \mathbb{F}_3 .

- 5. Bestimmen Sie die Ordnung der folgenden Elemente:
 - (a) i, $e^{i\sqrt{3}\pi}$ und $e^{\frac{2\pi i}{17}}$ in der Gruppe \mathbb{C}^{\times} ;
 - (b) $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ und $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ in der Gruppe $GL_2(\mathbb{C})$;
 - (c) 1, 2 und 3 in \mathbb{F}_{17}^{\times} .
- 6. Sei $n \ge 2$ eine ganze Zahl. Wie in der Vorlesung bezeichnen wir mit D_{2n} die Gruppe der Abbildungen von \mathbb{C} nach \mathbb{C} , die das reguläre n-gon auf sich selbst abbilden. Das Bild unten zeigt für n=6 die Symmterieachsen der 6 Symmetrien des regulären 6-gons:



- (a) Wir definieren für $\zeta = e^{2\pi i/n} \in \mathbb{C}$, $T := [z \mapsto \zeta z]$ als die Rotation um $2\pi/n$ und $S := [z \mapsto \zeta^k \overline{z}]$ als eine der n Symmetrien, $k = 0, \ldots, n-1$. Zeigen Sie, dass $STS^{-1} = T^{-1}$.
- (b) Bestimmen Sie die Konjugationsklassen der Elemente von D_{2n} .
- (c) Bestimmen Sie $Z(D_{2n})$ for all $n \ge 2$.
- (d) Zeigen Sie, dass $[D_{2n}, D_{2n}] = C_n$, falls n ungerade ist. $Erinnerung: C_n = \langle T \rangle$ ist die Untergruppe von D_{2n} , die aus den Rotationen besteht.
- (e) Bestimmen Sie die Untergruppen von $D_{2\cdot 4}$ und D_{2p} für p prim.

2