Serie 9

NORMALE UNTERGRUPPEN, FAKTORGRUPPEN, GRUPPENWIRKUNGEN

- 1. Sei G eine Gruppe und H, K < G Untergruppen von G. Zeigen Sie:
 - (a) Das Produkt HK ist im Allgemeinen keine Untergruppe von G.
 - (b) Angenommen H, K sind normal in G, dann ist HK eine normale Untergruppe von G.
 - (c) Angenommen $H \triangleleft K$ und $K \triangleleft G$, also H ist eine normale Untergruppe von K und K ist eine normale Untergruppe von G, dann ist H im Allgemeinen keine normale Untergruppe von G.

Hinweis: Betrachten Sie $D_{2\cdot 4}$.

Nehmen wir zusätzlich an, dass H charakteristisch in K ist, dann ist H normal in G.

- 2. Sei S_n die symmetrische Gruppe auf n Elementen, $n \ge 2$.
 - (a) Wir lassen S_n auf $\{1, \ldots, n\}$ wirken und wir definieren eine Wirkung von S_n auf $\{1, \ldots, n\} \times \{1, \ldots, n\}$ durch $g \cdot (i, j) := (g(i), g(j))$ (dies nennt man auch die diagonale Wirkung). Zeigen Sie, dass diese Wirkung genau zwei Bahnen hat und bestimmen Sie diese.
 - (b) Sei $\sigma \in S_n$. Wir bezeichnen durch $F(\sigma)$ die Anzahl der Punkte die von σ fixiert werden. Zeigen Sie, dass gilt:

$$\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma) = 1$$

$$\frac{1}{n!} \sum_{\sigma \in S_n} F(\sigma)^2 = 2$$

Hinweis: Wir bemerken, dass $F(\sigma) = \sum_{x:\sigma(x)=x} 1$. Vertauschen Sie nun die Reihenfolge der Summation.

- 3. Sei G eine Gruppe und sei H < G eine Untergruppe.
 - (a) Angenommen H hat Index 2 in G. Zeigen Sie, dass H eine normale Untergruppe von G ist.
 - (b) Angenommen H ist von endlichem Index in G. Zeigen Sie, dass ein in H enthaltener Normalteiler $N \triangleleft G$ von endlichem Index existiert.

Hinweis: Finden Sie einen Homomorphismus $G \to S_n$, für n := [G : H], dessen Kern in H enthalten ist.

- 4. Sei G eine Gruppe, die auf eine Menge T wirkt.
 - (a) Für $H \subseteq G$ definieren wir die Menge der H-Fixpunkte als

$$T^H := \{ x \in T : \forall h \in H, h \cdot x = x \}.$$

Finden Sie ein Beispiel in dem T^H nicht G-invariant ist, d.h. es existiert ein $g \in G$ und ein $x \in T^H$, so dass $g \cdot x \notin T^H$. Zeigen Sie, dass, falls $H \subseteq G$, die Wirkung von G auf T eine Wirkung von G/H auf T^H induziert. Warum wirkt G/H im Allgemeinen nicht auf T?

- (b) Seien $t_1, t_2 \in T$ Elemente in der gleichen G-Bahn. Zeigen Sie, dass die Stabilisatoren $\operatorname{Stab}_G(t_1)$ und $\operatorname{Stab}_G(t_2)$ von t_1 und t_2 in G konjugiert sind.
- 5. Sei G eine Gruppe. Wie in der Vorlesung betrachten wir den Gruppenhomomorphismus $\rho: G \longrightarrow \operatorname{Aut}(G)$, der ein Element $g \in G$ auf den Automorphismus $(x \mapsto gxg^{-1})$ schickt, d.h. Konjugation mit g. Wir definieren die Gruppe der inneren Automorphismen von G als

$$\operatorname{Inn}(G) := \operatorname{Im}(\rho).$$

(a) Zeigen Sie, dass $Inn(G) \triangleleft Aut(G)$.

Wir definieren die Gruppe der äusseren Automorphismen von G als die Faktorgruppe Out(G) := Aut(G)/Inn(G).

(b) Bestimmen Sie $\operatorname{Out}(S_3)$.

Hinweis: S_3 wird von zwei Permutationen erzeugt: $\sigma: (1 \mapsto 2 \mapsto 3 \mapsto 1)$ und $\tau_{12}: (1 \mapsto 2 \mapsto 1, 3 \mapsto 3)$. Benutzen Sie Aufgabe 2(a) aus Serie 8.

- (c) Zeigen Sie, dass $\operatorname{Out}(\operatorname{GL}_n(\mathbb{C})) \neq \{1\}$. *Hinweis:* Betrachten Sie die komplexe Konjugation.
- (d) Angenommen $\operatorname{Aut}(G)$ ist zyklisch. Zeigen Sie, dass G abelsch ist. Hinweis: Zeigen Sie, dass jede Untergruppe einer zyklischen Gruppe zyklisch ist.
- 6. Beschreiben Sie alle Gruppen der Ordnung ≤ 10 bis auf Isomorphie.

Hinweis: Es gibt bis auf Isomorphie zwei nicht-abelsche Gruppen der Ordnung 8. Eine davon ist die Quaternionengruppe $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ mit der Verknüpfung $\cdot: Q_8 \times Q_8 \to Q_8$, die neben den üblichen Vorzeichenregeln die folgenden Relationen erfüllt: $i \cdot i = j \cdot j = k \cdot k = i \cdot j \cdot k = -1$.