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18 Chain Complexes

Exercise 1.4.4 Consider the homology H,(C) of C as a chain ¢6mplex with
zero differentials. Show that if the complex C is split, then
homotopy equivalence between C and H,(C). Give an example in which the
converse fails.

Exercise 1.4.5 In this exercise we shall show that tie chain homotopy classes
of maps form a quotient category K of the categopy Ch of all chain complexes.
The homology functors H, on Ch will factor’ through the quotient functor
Ch — K.

1. Show that chain homotopy equiydlence is an equivalence relation on
the set of all chain maps fromy/C to D. Let Homg(C, D) denote the
equivalence classes of such s. Show that Homg (C, D) is an abelian
group. _

2. Let f and g be chain hgmotopic maps from C to D. If u: B — C and
v: D -» E are chain s, show that vfu and vgu are chain homotopic.

are given in (1).
; d g1 be chain maps from C to D such that f; is chain
“homotopic 16 gi (i =1, 2). Show that fy + f; is chain homotopic to

1.5 Mapping Cones and Cylinders

1.5.1 Let f: B — C be a map of chain complexes. The mapping cone of
f is the chain complex cone(f) whose degree n part is By—1 & Cy,. In order
to match other sign conventions, the differential in cone(f) is given by the
formula ;

d(b, ¢) = (~d(b), d(c) — f(B)), (b€ Bu_yceCp).

That is, the differential is given by the matrix
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Here is the dual notion for a map f: B' — C* of cochain complexes. The
mapping cone, cone(f), is a cochain complex whose degree n part is Bl g
C". The differential is given by the same formula as above with the same signs.

Exercise 1.5.1 Let cone(C) denote the mapping cone of the identity map id¢
of C; it has Cy—1 & C, in degree n. Show that cone(C) is split exact, with
5(b, ¢) = (—c, 0) defining the splitting map.

Exercise 1.5.2 Let f: C — D be a map of complexes. Show that f is null
homotopic if and only if f extends to a map (—s, f): cone(C) — D.

1.5.2 | Any map fi: Hy(B) = H,(C) can be fit into a long exact sequence
of homology groups by use of the following device. There is a short exact
sequence

0 — C — cone(f) —aa» B[—1]1—=0

of chain complexes, where the left map sends ¢ to (0, c¢), and the right map
sends (b, c) to —b. Recalling (1.2.8) that H, 1 1(B[—1]) = H,(B), the homol-
ogy long exact sequence (with connecting homomorphism 3) becomes

v = Hyq1(cone(£)) =5 Hp(B) = Ho(C) = Hy(cone(f)) —> Hy_1(B) —> ---.

The following lemma shows that 3 = f;, fitting f into a long exact sequence.

1

Lemma 1.5.3 The map 0 in the above sequence is f.

Proof If b € B,, is a cycle, the element (—b, 0) in the cone complex lifts b via
8. Applying the differential we get (db, fb) = (0, fb). This shows that

d[b] = [fb] = fulb]. <

Corollary 1.5.4 A map f: B — C is a quasi-isomorphism if and only if the
mapping cone complex.cone( f) is exact. This device reduces questions about
quasi-isomorphisms to the study of split complexes.

Topological Remark Let K be a simplicial complex (or more generally a cell
complex). The topological cone CK of K is obtained by adding a new vertex
s to K and “coning off” the simplices (cells) to get a new (n + 1)-simplex
for every old n-simplex of K. (See Figure 1.1.) The simplicial (cellular) chain
complex C (s) of the one-point space (s} is R in degree 0 and zero elsewhere.
C (s) is a subcomplex of the simplicial (cellular) chain complex C (CK) of
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13. Euler’s Formula

Let us recall, without proof, the Fundamental Theorem of Abelian Groups.
A finitely generated free abelian group A4 is isomorphic to Z' for some r.
Suppose that B < A is a subgroup. Then there exists a basis a,,...,a, of 4
and nonzero integers n, |n,|---|n, (each dividing the next) with s < r such that
n,d,,...,na, is a basis for B. In particular, B is free abelian of rank s and

(1) ABRZ, ® - ®L, ®L "

The integer r — s > 0 is called the rank of A/B. Note that it is the dimension
of the rational vector space (4/B)® Q where Q is the rationals.

Thus any finitely generated abelian group has the form of (1) and if
0—- B— A—C~—0 is an exact sequence of finitely generated abelian groups
then rank(A) = rank(B) + rank(C).

13.1. Definition. A space X is said to be of finite type if H(X) is finitely
generated for each i. It is of bounded finite type if H/(X) is also zero for all
but a finite number of i.

13.2. Definition. If X is a space of bounded finite type then its Euler
characteristic is |

x(X) = Z (— 1) rank H/(X).

Note then that y(X) is a topological invariant of X.

13.3. Theorem (Euler—Poincaré). Let X be a finite CW-complex and let a;
be the number of i-cells in X. Then y(X) is defined and

1X) =2 (= 1)a,

i

Proor. Note that a;=rank C/(X). Let Z,c C;= C{(X) be the group of
i-cycles, B; = 0C; . ,, the group of i-boundaries, and H; = H;(C (X)) =~ H(X).
The exact sequence
0-Z;—C;—>B,_; —0
shows that :
rank(C,) = rank(Z;) + rank (B;_ ).

Similarly the exact sequence 0 — B; - Z;— H;— 0 shows that

rank(Z,;) = rank(B;) + rank(H)).
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Adding the last two equations with signs (— 1)' gives
Y. (= 1) (rank(H,) + rank(B;)) = 3" (— 1)’ rank(Z;)
= Z ) (rank(C;) — rank(B;_ ,)).

The terms in B, cancel, leaving y(X) =, (— 1)'rank(H,) = ¥, (— 1)’ rank(C,)
=35 (— Da, L]

13.4. Corollary (Euler). For any CW-complex structure on the 2-sphere with
F 2-cells, E 1-cells and V 0-cells, we have F — E + V = 2. ]

13.5. Proposition. If X — Y is a covering map with k sheets (k finite) and Y is
a finite CW-complex then X is also a CW-complex and y(X) = ky(Y).

PRrROOF. Since the characteristic maps D'— Y are maps from a simply
connected space, they lift to X in exactly k ways. This gives the structure of
a CW-complex on X with the number of i-cells exactly k times that number
for Y. (Also see Theorem 8.10.) Thus the alternating sum of these for X is k
times the same thing for Y. O

13.6. Corollary. If S*"— Y is a covering map and Y is CW then the number
of sheets is either 1 or 2, O

13.7. Corollary. The Euler characteristic of real projective 2n-space P*" is 1.

[l

13.8. Corollary. Iff:P*"— Y is a covering map and Y is a CW-complex then
f is a homeomorphism. O

The hypothesis that Y is a CW-complex in Corollaries 13.6 and 13.8 can
be dropped, but we do not now have the machinery to prove that.

PROBLEMS

1. Use the knowledge of the covering spaces of the torus, but do not use the knowledge
of its homology groups, to show that its Euler characteristic is zero.

2. If X is a finite CW-complex of dimension two, and if X is simply connected
then show that y(X) determines H,(X) completely What are the possible values
for y(X) in this situation?

3. Let

A= gt and o Bl)=3 b

e i=0
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