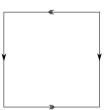
HS 2020

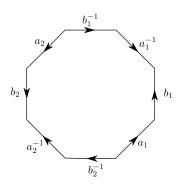
Problem set 6

- 1. Use the Mayer-Vietoris sequence to compute the homology of the space X obtained by identifying three *n*-discs along their boundaries.
- 2. Use the Mayer-Vietoris sequence to compute $H_*(\mathbb{R}P^2)$.
- 3. The Klein bottle K is the space obtained from the square I^2 by identifying opposite sides as indicated in the following picture:



Use Mayer-Vietoris to compute $H_*(K)$.

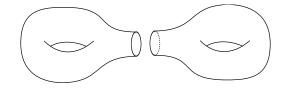
4. Consider a polygon with 4g edges which are grouped into g tuples, each consisting of 4 consecutive edges labelled in counterclockwise order by $a_k, b_k, a_k^{-1}, b_k^{-1}$ for $1 \le k \le g$ (the figure shows the case g = 2). By identifying the edges according to the labelling, one obtains a closed orientable surface Σ_g of genus g.



Compute $H_*(\Sigma_g)$ using this description and the Mayer-Vietoris sequence.

5. Given two manifolds M_0, M_1 of the same dimension, one can construct their connected sum $M_0 \# M_1$ by cutting out the interiors of two embedded closed discs $D_0 \subset M_0, D_1 \subset M_1$, and identifying the boundaries ∂D_0 and ∂D_1 by some homeomorphism. (One doesn't need to precicely know what a manifold is in order to solve this exercise.)

An alternative inductive construction of the orientable genus g surfaces Σ_g is as follows: Σ_1 is the torus T^2 , and Σ_g is defined as $\Sigma_{g-1} \# \Sigma_1$ for $g \geq 2$. The figure shows how Σ_2 arises that way.



Compute $H_*(\Sigma_g)$ using this description and the Mayer-Vietoris sequence.

- 6. Construct a cycle that represents a generator of $\widetilde{H}_n(S^n)$ for n = 0, 1, 2. (Start with n = 0, then pass to n = 1 using Mayer-Vietoris, and then to n = 2 using Mayer-Vietoris.)
- 7. Suppose that $X \vee Y$ be the wedge product obtained by identifying two points which are deformation retracts of neighbourhoods $U \subset X$ and $V \subset Y$. Show that $\widetilde{H}_n(X \vee Y) \cong \widetilde{H}_n(X) \oplus \widetilde{H}_n(Y)$ for all n using Mayer-Vietoris.
- 8. Denote by SX the (unreduced) suspension of X, obtained from $I \times X$ by collapsing $\{0\} \times X$ and $\{1\} \times X$ each to a point. Use Mayer-Vietoris to show that $\widetilde{H}_n(SX) \cong \widetilde{H}_{n-1}(X)$.