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Solutions to problem set 5

1. Define f : X ∨ Y → W by f(x) = (x, y0) for x ∈ X and f(y) = (x0, y) for y ∈ Y . This is

clearly bijective and maps the base point ∗ ∈ X ∨Y to the base point (x0, y0). f is obviously

a homeomorphism away from ∗. Open neighboorhoods of (x0, y0) ∈ W are of the form

N = (U × {y0}) ∪ ({x0} × V ) for U ⊂ X an open neighbourhood of x0 and V ⊂ Y an open

neighbourhood of y0. Its inverse image is f−1(N) = π(U)∪π(V ), where π : X tY → X ∨Y
denotes the projection. These are precisely the open neighbourhoods of ∗ in X ∧ Y . We

conclude that f and f−1 are both continuos in ∗ and so f is a homeomorphism.

2. Define f ∨ g : X ∨ Y → X ′ ∨ Y ′ by (f ∨ g)(x, y0) := (f(x), y′0) and (f ∨ g)(x0, y) :=

(x′0, g(y)). f ∨ g preserves the base point and is clearly continous away from (x0, y0).

An open neighbourhood N ′ = (U ′ × {y′0}) ∪ ({x′0} × V ′) of (x′0, y
′
0) has inverse image

(f ∨ g)−1(N ′) = (f−1(U ′) × {y0}) ∪ ({x0} × g−1(V ′)). This is an open neighbourhood

of (x0, y0). Therefore f ∨ g is also continuos in (x0, y0). Moreover, idX ∨ idY = idX∨Y and

(f ′ ◦ f) ∨ (g′ ◦ g) = (f ′ ∨ g′) ◦ (f ∨ g) for maps f ′ : X ′ → X ′′ and g′ : Y ′ → Y ′′.

3. We denote by [x, y] ∈ X ∧ Y the equivalence class of (x, y) ∈ X × Y .

(a) Define f ∧ g : X ∧ Y → X ′ ∧ Y ′ by setting (f ∧ g)[x, y] := [f(x), g(y)]. This is well-

defined: if (x, y) ∈ X ∨ Y then (f(x), g(y)) ∈ X ′ ∨ Y ′ because f and g preserve base

points. f ∧ g is continuos because f × g is continuous. Moreover, idX ∧ idY = idX∧Y
and (f ′ ◦ f) ∧ (g′ ◦ g) = (f ′ ∧ g′) ◦ (f ∧ g) for maps f ′ : X ′ → X ′′ and g′ : Y ′ → Y ′′. So

∧ is functorial.

(b) Define ϕX,Y : X ∧ Y → Y ∧ X by ϕX,Y [x, y] = [y, x]. It is easy to see that this is a

homeomorphism and that the diagram commutes.

(c) Define ψX,Y,Z : (X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z) by ψX,Y,Z([[x, y], z]) = [x, [y, z]]. Consider

the compositions

(X × Y )× Z πX,Y ×id−−−−−−→ (X ∧ Y )× Z πX∧Y,Z−−−−−→ (X ∧ Y ) ∧ Z

and

X × (Y × Z)
id×πY,Z−−−−−→ X × (Y ∧ Z)

πX,Y∧Z−−−−−→ X ∧ (Y ∧ Z).

Since all the spaces are locally compact, πX,Y × id and id × πY,Z are quotient maps

(see e.g. J. H. C. Whitehead, A note on a theorem of Borsuk, Bull. Amer. Math. Soc,

54 (1958), 1125-1132, Lemma 4). Therefore, the two compositions are both quotient

maps. It now follows from the universal property of quotient maps that ψX,Y,Z is a

homeomorphism.

Naturality means that the following diagram commutes:

(X ∧ Y ) ∧ Z
ψX,Y,Z //

(f∧g)∧h
��

X ∧ (Y ∧ Z)

f∧(g∧h)

��
(X ′ ∧ Y ′) ∧ Z ′

ψX′,Y ′,Z′// X ′ ∧ (Y ′ ∧ Z ′).

This is easy to check.
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The assumption that X,Y, Z are locally compact Hausdorff spaces is necessary. A coun-

terexample can be found in J. Peter May, Johann Sigurdsson, Parametrized Homotopy

Theory, Amer. Math. Soc, 10 (2006), section 1.7.

4. (a) First of all, note that Q is a locally compact Hausdorff space and X ∧ Y is a compact

Hausdorff space. Denote by π : X × Y → X ∧ Y the quotient map. Note that π sends

Q ⊂ X × Y bijectively to (X ∧ Y )\{∗}. By Theorem 11.3 in Bredon, it is enough to

show that the injection π|Q : Q→ X ∧ Y is a homeomorphism onto its image. Indeed,

π|Q is open: An open set U ⊂ Q is also open in X × Y because Q is open in X × Y .

Moreover, π−1(π(U)) = U and hence π(U) ⊂ X ∧ Y is open. We conclude that π|Q is

a homeomorphism onto its image and X ∧ Y is the 1-point compactification of Q.

(b) The compactification of (Sm\{x0})× (Sn\{y0}) ≈ Rm × Rn ≈ Rm+n is Sm+n. It now

follows from (a) that Sm ∧ Sn ≈ Sm+n.

5. (a) The map

gn : Rn+1\{0} −→ Sn

x 7−→ x

||x||
.

descends to a homeomorphism RPn → Sn/(x ∼ −x). The map

fn : Bn −→ RPn

x = (x1, . . . , xn) 7−→ [x1, . . . , xn,
√

1− |x|2]

descends to a homeomorphism (Bn/ ∼) → RPn, where x ∼ y in Bn if and only if

x = −y ∈ ∂Bn.

(b) RP 0 is a point and so it’s a CW-complex with one 0-cell. View RPn as Bn/ ∼. As

such, RPn can be obtained as a 2-cell Bn glued to ∂Bn/(x ∼ −x) along the boundary

via the projection ∂Bn → ∂Bn/(x ∼ −x). Note that

∂Bn/(x ∼ −x) ≈ Sn−1/(x ∼ −x) ≈ RPn−1.

Hence RPn is obtained by gluing precisely one n-cell to RPn−1. This provides CW-

structures as claimed by proceeding inductivly over

RP 0 ⊂ RP 0 ∪B1 ≈ RP 1 ⊂ RP 1 ∪B2 ≈ RP 2 ⊂ . . . .

The characteristic map for the k-cell ak is fak := fk : Bk → RP k ⊂ RPn. Note that

fak is an embedding on Int(Bk). Moreover, fak(∂Bk) = {[x1, . . . , xk, 0] ∈ RP k} ≈
RP k−1 ⊂ RPn. The attaching map is its restriction to ∂Bk:

f∂ak : ∂Bk ≈ Sk−1 −→ RP k−1 ⊂ RPn.

(c) The cellular chain complex of RPn has one copy of Z in each degree 0 ≤ k ≤ n and is

0 in all the other degrees. For the k-cell ak consider the projection

pak : RP k ≈
(
Bk/ ∼

)
→
(
Bk/∂Bk

)
≈ Sk.

The differential dk : Z −→ Z in degree 1 ≤ k ≤ n is given by multiplication with the

degree of the map pak−1
f∂ak : Sk−1 → Sk−1, 1 ≤ k ≤ n. [0] ∈ Bk−1/∂Bk−1 ≈ Sk−1

has two preimages under pak−1
f∂ak : N = (0, . . . , 0, 1) ∈ Sn−1 and S = (0, . . . , 0,−1) ∈
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Sn−1. Near N , this map is an orientation-preserving homeomorphism. So the local

degree at N is 1. Near S, it is the antipodal map composed with an orientation-

preserving homeomorphism. So the local degree near S is (−1)k. Therefore,

deg(pak−1
f∂ak) = 1 + (−1)k =

{
0, k odd,

2, k even

Suppose n is even. Then the cellular chain complex is

0→ Z ∗2−→ Z 0−→ . . .Z ∗2−→ Z 0−→ Z −→ 0

with non-zero groups exactly in degrees 0, . . . , n, and thus we obtain

Hk(RPn;Z) ∼=


Z, k = 0

Z/2Z, k = 1, 3, . . . , n− 1

0 otherwise.

For n being odd, one computes similarly

Hk(RPn;Z) ∼=


Z, k = 0, n

Z/2Z, k = 1, 3 . . . , n− 2

0 otherwise.

An alternative solution can be found in Bredon, Chapter IV. 14.

6. Compactify R2 and consider the stereographic projection

π : S2 → R2 ∪ {∞}.

View the graph G in S2 by considering G̃ := π−1(G) ⊂ S2. G̃ defines a CW-structure on

S2 with one 0-cell for each vertex of G, one 1-cell for each edge of G and one 2-cell for each

face of G.

The Euler characteristic of S2 therefore is ξ(S2) = v− e+ f. On the other hand, ξ(S2) = 2,

as can been seen from singular homology. We conclude: v − e+ f = 2.

7. We view T 3 = I3/ ∼ as the quotient space of the cube I3 under the relation that identifies

opposite faces of the boundary. From this description, one sees that T 3 has a CW complex

structure with one 0-cell a (any of the corner points—note that these get identified under

I3 → T 3), three 1-cells b1, b2, b3 (the line segments on the coordinate axes), three 2-cells

c1, c2, c3 (the squares in the coordinate planes), and one 3-cell d (all of I3); in all these cases

the attaching maps is given by restriction of the quotient map I3 → T 3.

The corresponding cellular chain complex is

0→ Z ∂3−→ Z3 ∂2−→ Z3 ∂1−→ Z→ 0

with linear maps ∂i which we now compute. We have ∂1 = 0 since the attaching maps

fbi : I → (T 3)(0) = {a} take both boundary points 0, 1 ∈ I to the same point (cf. the remark

in Bredon after Theorem 10.3). We also have ∂2 = 0, since all maps pbif∂cj : ∂I2 → S1 have

degree 0 (by the same argument as for the standard CW complex structure of the 2-torus;

see Bredon example 10.5).

As for ∂3, consider any of the maps pcif∂d : ∂I3 → S2. Note that there are two opposite

faces of ∂I3 in whose interiors this map restricts to a homeomorphism, and that the map
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collapes the rest of ∂I3 to a point in S2. The degree of pcif∂d is hence the sum of the two

local degrees at any two points q, q′ in the two first-mentioned faces which get mapped to the

same point in T 3. Now note that the restrictions of pcif∂d to these faces are obtained from

one another by precomposing with an orientation-reversing map (for orientations induced

from an orientation of ∂I3); therefore the sum of these local degrees vanishes. It follows that

also ∂3 = 0.

Summing up, we obtain

Hi(T
3) ∼=

{
Z, i = 0, 3,

Z3, i = 1, 2.

8. (a) One possible CW complex structure has two 0-cells a1, a2 (the north and south poles),

two 1-cells b1, b2 (the line segment mentioned in the description of X and another

segment on the sphere connecting the poles), and one 2-cell c. We then have

deg(pa2f∂bj ) = 1, deg(pa1f∂bj ) = −1

for j = 1, 2, supposing that the attaching maps fbj : I → X(0) are such that both

map 0 ∈ ∂I to a1 and 1 ∈ ∂I to a2 (cf. the remark in Bredon after Theorem 10.3).

Moreover, we have

deg(pbjf∂c) = 0

for j = 1, 2, as both maps pbjf∂c are null-homotopic. The cellular chain complex is

therefore

0→ Z 0−→ Z2 ∂1−→ Z2 → 0, ∂1 =

(
−1 −1

1 1

)
: Z2 → Z2.

Both the kernel and the cokernel of ∂1 are 1-dimensional, and therefore

Hk(X) ∼=

{
Z, k = 0, 1, 2,

0 otherwise.

(Note that there is an even simpler CW complex structure for X with exactly one k-cell

for k = 0, 1, 2.)

(b) X ' S2 ∨ S1 implies H̃∗(X) = H̃∗(S
2 ∨ S1) ∼= H̃∗(S

2) ⊕ H̃∗(S
1); hence H̃2(X) =

H̃1(X) = Z and H̃0(X) = 0, from which the result above follows by the definition of

reduced homology.

Alternatively: Excising a neighbourhood of the point joining the two spheres yields

H̃∗(X) ∼= H∗(D
2, ∂D2)⊕H∗(I, ∂I) from which the result above again follows easily.

9. We assume wlog that p and q are coprime (otherwise divide by their greatest common

divisor), which implies that there exist integers a, b such that ap− bq = 1. Hence the matrix

Ψ =

(
a q

b p

)
lies in SL(2,Z) and therefore induces a homeomorphism ψ : T 2 → T 2 of T 2 = R2/Z2. Note

that Ψ−1 ∈ SL(2,Z) takes the line given by px = qy to the line given by x = 0, because Ψ

takes (0, 1) to (q, p) (and these vectors generate the two lines). Therefore ψ−1 takes C to the

curve C ′ that’s the image of x = 0 under R2 → T 2 and which is the 1-cell of the standard

CW complex structure on T 2. Thus T 2/C has a CW complex structure with one cell ak
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in dimensions k = 0, 1, 2, and the corresponding cellular differential vanishes (by the same

reasons as for T 2). Therefore

Hk(T 2/C) ∼=

{
Z, k = 0, 1, 2

0 otherwise.

10. We view S1 × S1 as I2/ ∼, the quotient obtained by identifying opposite points on the

boundary of ∂I2 as indicated in the figure below. We endow it with the corresponding

obvious CW complex structure with one 0-cell, two 1-cells, and one 2-cell and arrange this

to be such that the subspace S1 ∨ S1 that gets collapsed is the union of the two closed

1-cells. Moreover, we equip S2 with the obvious CW complex structure with one 0-cell and

one 2-cell, arranging that the 0-cell is the point to which S1 ∨ S1 gets collapsed.

Our quotient map g : S1 × S1 → S2 is cellular in this identification. Denoting the 2-cell

of S1 × S1 by σ and the 2-cell of S2 by τ , the map g∆ : C∗(S
1 × S1) → C∗(S

2) induced

by g on cellular chains takes σ 7→ g∆(σ) = τ because deg(gτ,σ) = 1 for the relevant map

gτ,σ : S2 → S2 (see Bredon chapter IV. 11). The induced map g∗ : H2(S1 × S1)×H2(S2) is

hence the identity, and therefore g is not null-homotopic.

Let now f : S2 → S1 × S1 be a map in the other direction. Consider the covering map

q : R2 → S1 × S1 (obtained by identifying S1 × S1 = R2/Z2). As π1(S2) is trivial, f can be

lifted to a map to R2, i.e., there exists a map f̃ : S2 → R2 such that q ◦ f̃ = f . Since R2 is

contractible, f̃ is null-homotopic, and hence so is f .

11. As discussed in class, RPn has a CW complex structure with exactly one k-cell for every

k = 0, . . . , n. Therefore RPn/RPm has a CW complex structure with one 0-cell a0 and one

k-cell ak for every k = m+ 1, . . . , n. As in the case RPn, we have

deg(pak−1
f∂ak) = 1 + (−1)k

{
0, k odd,

2, k even.

Thus the cellular chain complex C∗(RPn/RPm) has one copy of Z in degrees k = 0 and k =

m+ 1, . . . , n, and the cellular differential Ck(RPn/RPm)→ Ck−1(RPn/RPm) is 1 + (−1)k

for all k = m+ 2, . . . , n and vanishes in all other cases. The homology is therefore

Hk(RPn/RPm) ∼=



Z, k = 0

Z, k = m+ 1 (if m+ 1 is even),

Z, k = n (if n is odd),

Z2, m+ 1 ≤ k < n and k odd,

0, otherwise.
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