Prof. Dr. A. Iozzi	Introduction to Lie Groups
Y. Krifka	

Exercise Sheet 2

Exercise 1.(Identity Neighborhoods Generate Connected Groups):

Let *G* be a connected topological group, $U \subset G$ an open neighborhood of the identity and $U^n := \{g_1 \cdots g_n | g_1, \dots, g_n \in U\}$. Show that $G = \bigcup_{n=1}^{\infty} U^n$.

<u>Hint:</u> You may assume that $g^{-1} \in U$ for every $g \in U$. Why?

Exercise 2.(Transitive Group Actions):

Let *G* be a topological group, *X* a topological space and $\mu : G \times X \to X$ a continuous transitive group action, i.e. for any two $x, y \in X$ there is $g \in G$ such that $\mu(g, x) = g \cdot x = y$.

- a) Show that if *G* is compact then *X* is compact.
- b) Show that if *G* is connected then *X* is connected.

Exercise 3.(Examples of Haar Measures):

a) Let us consider the *three-dimensional Heisenberg group* $H = \mathbb{R} \rtimes_{\eta} \mathbb{R}^2$, where $\eta : \mathbb{R} \to \operatorname{Aut}(\mathbb{R}^2)$ is defined by

$$\eta(x) \begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} y \\ z + xy \end{pmatrix},$$

for all $x, y, z \in \mathbb{R}$. Thus the group operation is given by

$$(x_1, y_1, z_1) * (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2)$$

and it is easy to see that it can be identified with the matrix group

$$H \cong \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$$

Verify that the Lebesgue measure is the Haar measure of $\mathbb{R} \rtimes_{\eta} \mathbb{R}^2$ and that the group is unimodular.

b) Let

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a, b \in \mathbb{R}, a \neq 0 \right\}.$$

Show that $\frac{da}{a^2} db$ is the left Haar measure and da db is the right Haar measure. In particular, *P* is *not* unimodular.

c) Let $G := \operatorname{GL}_n(\mathbb{R}) \subseteq \mathbb{R}^{n^2}$ denote the group of invertible matrices over \mathbb{R} . Let λ_{n^2} denote the Lebesgue measure on \mathbb{R}^{n^2} . Prove that

$$\mathrm{d}m(x) := |\mathrm{det}x|^{-n} \,\mathrm{d}\lambda_{n^2}(x)$$

defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.

d) Let $G = SL_n(\mathbb{R})$ denote the group of matrices of determinant 1 in $\mathbb{R}^{n \times n}$. For a Borel subset $B \subseteq SL_n(\mathbb{R})$ define

$$m(B) := \lambda_{n^2} \{ \{ tg; g \in B, t \in [0, 1] \} \}$$

Show that *m* is a well-defined bi-invariant Haar measure on $SL_n(\mathbb{R})$.

e) Let *G* denote the ax + b group defined as

$$G = \left\{ \begin{pmatrix} a & b \\ & 1 \end{pmatrix}; a \in \mathbb{R}^{\times}, b \in \mathbb{R} \right\}$$

Note that every element in *G* can be written in a unique fashion as a product of the form:

$$\left(\begin{array}{cc}a&b\\&1\end{array}\right) = \left(\begin{array}{cc}\alpha\\&1\end{array}\right) \left(\begin{array}{cc}1&\beta\\&1\end{array}\right)$$

where $\alpha \in \mathbb{R}^{\times}$ and $\beta \in \mathbb{R}$, which yields a coordinate system $\mathbb{R}^{\times} \times \mathbb{R} \leftrightarrow G$. Prove that

$$\mathrm{d}m(\alpha,\beta) = \frac{1}{|\alpha|} \,\mathrm{d}\alpha \,\mathrm{d}\beta$$

defines a left Haar measure on *G*. Calculate $\Delta_G(\alpha, \beta)$ for $\alpha \in \mathbb{R}^{\times}$ and $\beta \in \mathbb{R}$.

Exercise 4.(Haar Measure and Transitive Actions):

Let *G* be a locally compact Hausdorff group and let *X* be a topological space. Suppose that *G* acts on *X* continuously and transitively. Let $o \in X$, and denote $\pi: G \to X, g \mapsto g \cdot o$. Further, let

$$H := \operatorname{Stab}(o) = \{h \in G \mid h \cdot o = o\}$$

be the stabilizer of *o*.

Suppose there is a continuous section $\sigma: X \to G$ of π , i.e. $\pi \circ \sigma = Id_X$.

a) Show that $\psi: X \times H \to G, (x, h) \mapsto \sigma(x)h$ is a homeomorphism.

Hint: Find a continuous inverse!

b) Suppose there is a (left) Haar measure ν on H and suppose there is a left *G*-invariant Borel regular measure λ on X.

Show that the push-forward measure $\psi_*(\lambda \otimes \nu)$ is a (left) Haar measure on *G*.

c) Find a Haar measure on $Iso(\mathbb{R}^2)$.

Exercise 5. (Aut(\mathbb{R}^n , +) \cong GL(n, \mathbb{R})):

For a topological group *G*, we denote by Aut(*G*) the group of bijective, continuous homomorphisms of *G* with continuous inverse. Consider the locally compact Hausdorff group $G = (\mathbb{R}^n, +)$ where $n \in \mathbb{N}_0$.

- a) Show that Aut(G), i.e. the group of bijective homomorphisms which are homeomorphisms as well, is given by $GL_n(\mathbb{R})$.
- b) Show that mod : Aut(*G*) $\rightarrow \mathbb{R}_{>0}$ is given by $\alpha \mapsto |\det \alpha|^{-1}$.
- c) Prove that there exists a discontinuous, bijective homomorphism from the additive group $(\mathbb{R}, +)$ to itself.

Exercise 6.(Iterated Quotient Measures):

Let *G* be a locally compact Hausdorff group. Show that if $H_1 \le H_2 \le G$ are closed subgroups and H_1, H_2, G are all unimodular then there exist invariant measures dx, dy, dz on $G/H_1, G/H_2$ and H_2/H_1 respectively such that

$$\int_{G/H_1} f(x)dx = \int_{G/H_2} \left(\int_{H_2/H_1} f(yz)dz \right) dy$$

for all $f \in C_c(G/H_1)$.

Exercise 7. (No $SL_2(\mathbb{R})$ -invariant Measure on $SL_2(\mathbb{R})/P$):

Let $G = SL_2(\mathbb{R})$ and P be the subgroup of upper triangular matrices. Show directly that there is no (non-trivial) finite *G*-invariant measure on *G*/*P*.

<u>Hint:</u> Identify $G/P \cong \mathbb{S}^1 \cong \mathbb{R} \cup \{\infty\}$ with the unit circle and consider a rotation

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

and a translation

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

Due date: Thursday, 15/10/2020

Please, upload your solution via the SAM upload tool.

In order to access the website you will need a NETHZ-account and you will have to be connected to the ETH-network. From outside the ETH network you can connect to the ETH network via VPN. Here are instructions on how to do that.

Make sure that your solution is **one PDF file** and that its **file name** is formatted in the following way:

solution_<number exercise sheet>_<last name>_<first name>.pdf

For example: If your first name is Alice, your last name is Miller, and you want to hand-in your solution to Exercise Sheet 2, then you will have to upload your solution as **one** PDF file with the following file name:

solution_2_Miller_Alice.pdf

Solutions that fail to comply with the above requirements will be ignored.