Prof. Dr. A. Iozzi	Introduction to Lie Groups
Y. Krifka	

Exercise Sheet 4

Exercise 1.(Related Vector Fields):

Let *M*, *N* be smooth manifolds and let $\varphi : M \to N$ be a smooth map. Recall that two vector fields $X \in Vect(M)$, $X' \in Vect(N)$ are called φ -related if

$$d_p\varphi(X_p) = X'_{\varphi(p)}$$

for every $p \in M$.

Show that [X, Y] is φ -related to [X', Y'] if $X \in Vect(M)$ is φ -related to $X' \in Vect(N)$ and $Y \in Vect(M)$ is φ -related to $Y' \in Vect(N)$.

Exercise 2.(Leibniz Rule):

Let $A, B : (-\varepsilon, \varepsilon) \to \mathbb{R}^{n \times n}$ be smooth curves and define $\varphi : (-\varepsilon, \varepsilon) \to \mathbb{R}^{n \times n}$ as the product $\varphi(t) := A(t)B(t)$. Show that

$$\varphi'(t) = A'(t)B(t) + A(t)B'(t)$$

for every $t \in (-\varepsilon, \varepsilon)$.

Exercise 3.(Some Lie Algebras):

a) Let *M*, *N* be smooth manifolds and let *f* : *M* → *N* be a smooth map of constant rank *r*. By the constant rank theorem we know that the level set L = f⁻¹(q) is a regular submanifold of *M* of dimension dim*M* − *r* for every q ∈ N. Show that one may canonically identify

$$T_p L \cong \operatorname{ker} d_p f$$

for every $p \in L = f^{-1}(q)$.

b) Use part a) to compute the Lie algebras of the Lie groups $O(n, \mathbb{R})$, O(p,q), U(n), $Sp(2n, \mathbb{C})$, B(n) and N(n) where B(n) is the group of real invertible upper triangular matrices and N(n) is the subgroup of B(n) with only ones on the diagonal.

Exercise 4.(Easy Direction of Frobenius' Theorem):

Let *M* be a smooth manifold and let \mathcal{D} be a distribution on *M*. Show that \mathcal{D} is involutive if it is completely integrable.

Exercise 5.(Distributions and Lie Subalgebras):

a) Let *M* be a smooth manifold, $X, Y \in Vect(M)$ vector fields on *M*, and $f, g \in C^{\infty}(M)$ smooth functions. Show that

$$[fX,gY] = fg[X,Y] + f(Xg)Y - g(Yf)X.$$

b) Show that the Lie algebra \mathfrak{h} of a Lie subgroup H of a Lie group G determines a left-invariant involutive distribution.

<u>Remark:</u> Part a) is not necessarily needed for part b).

Exercise 6.(Functions with values in immersed submanifolds):

Let M', M, N be smooth manifolds and let $\iota: N \hookrightarrow M$ be an injective immersion, i.e. ι is an injective smooth map whose differential is injective. Further, let $f: M' \to M$ be a smooth map with $f(M) \subseteq \iota(N)$.

Show that $\iota^{-1} \circ f : M' \to N$ is smooth if it is continuous.

Due date: Thursday, 12/11/2020

Please, upload your solution via the SAM upload tool.

In order to access the website you will need a NETHZ-account and you will have to be connected to the ETH-network. From outside the ETH network you can connect to the ETH network via VPN. Here are instructions on how to do that.

Make sure that your solution is **one PDF file** and that its **file name** is formatted in the following way:

solution_<number exercise sheet>_<last name>_<first name>.pdf

For example: If your first name is Alice, your last name is Miller, and you want to hand-in your solution to Exercise Sheet 2, then you will have to upload your solution as **one** PDF file with the following file name:

solution_2_Miller_Alice.pdf

Solutions that fail to comply with the above requirements will be ignored.