Prof. Dr. A. Iozzi Y. Krifka

Exercise Sheet 5

Exercise 1.(Discrete Subgroups of \mathbb{R}^n):

Let $D < \mathbb{R}^n$ be a discrete subgroup. Show that there are $x_1, \ldots, x_k \in D$ such that

- x_1, \ldots, x_k are linearly independent over \mathbb{R} , and
- $D = \mathbb{Z}x_1 \oplus \cdots \oplus \mathbb{Z}x_k$, i.e. x_1, \ldots, x_k generate *D* as a \mathbb{Z} -submodule of \mathbb{R}^n .

Exercise 2.(Covering maps of Lie Groups):

Let *G* be a Lie group, let *H* be a simply connected topological space and let $p : H \rightarrow G$ be a covering map.

- a) Show that there is a unique Lie group structure on H such that p is a smooth group homomorphism and that the kernel of p is a discrete subgroup of G.
- b) Show that p is a local isomorphism of Lie groups and that dp is an isomorphism of Lie algebras when H is equipped with the Lie group structure from part a).
- c) Let *H*, *G* be arbitrary Lie groups and let *G* be connected. Further, let $\varphi : H \rightarrow G$ be a Lie group homomorphism. Show that φ is a covering map if and only if $d\varphi : \mathfrak{h} \rightarrow \mathfrak{g}$ is an isomorphism.

<u>Remark:</u> Part a) and b) also work if *H* is not simply connected.

Exercise 3.(Abstract Subgroups as Lie Subgroups):

Let *H* be an abstract subgroup of a Lie group *G* and let \mathfrak{h} be a subspace of the Lie algebra \mathfrak{g} of *G*. Further let $U \subseteq \mathfrak{g}$ be an open neighborhood of $0 \in \mathfrak{g}$ and let $V \subseteq G$ be an open neighborhood of $e \in G$ such that the exponential map $\exp : U \to V$ is a diffeomorphism satisfying $\exp(U \cap \mathfrak{h}) = V \cap H$. Show that the following statements hold:

- a) *H* is a Lie subgroup of *G* with the induced relative topology;
- b) h is a Lie subalgebra of g;
- c) \mathfrak{h} is the Lie algebra of *H*.

Exercise 4.(Lie Group homomorphisms and their differentials):

Let *G* be a connected Lie group, let *H* be a Lie group and let $\varphi, \psi \colon G \to H$ be Lie group homomorphisms.

Show that $\varphi = \psi$ if and only if $d\varphi = d\psi$.

Exercise 5.(Surjectivity of the Matrix Exponential):

Let $\text{Exp} : \mathfrak{gl}(n, \mathbb{R}) \cong \mathbb{R}^{n \times n} \to \text{GL}(n, \mathbb{R})$ be the matrix exponential map given by the power series

$$\operatorname{Exp}(X) := \sum_{n=0}^{\infty} \frac{X^n}{n!}.$$

Consider the Lie subgroup of upper triangular matrices $N(n) < GL(n, \mathbb{R})$ with its Lie algebra $\mathfrak{n}(n) < \mathfrak{gl}(n, \mathbb{R})$ of strictly upper triangular matrices; cf. exercise sheet 4 problem 3.

Show that $\operatorname{Exp}|_{\mathfrak{n}(n)} : \mathfrak{n}(n) \to N(n)$ is surjective.

<u>Hint</u>: Consider the partially defined matrix logarithm Log : $\mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ given by

$$Log(I + A) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{A^n}{n}.$$

Try to give answers to the following questions and then conclude:

What is its radius of convergence r about I? Why is it a right-inverse of Exp on the ball $B_r(I)$ of radius r about I? Why is there no problem for matrices that are in N(n) but not in $B_r(I)$?

In order to answer the last question prove that $A^n = 0$ for all $A \in \mathfrak{n}(n)$.

Exercise 6.(Multiplication and exp):

Let *G* be a Lie group with Lie algebra \mathfrak{g} . Show that for all *X*, *Y* $\in \mathfrak{g}$ and small enough $t \in \mathbb{R}$

$$\exp(tX)\exp(tY) = \exp(t(X+Y) + O(t^2))$$

where $O(t^2)$ is a differentiable g-valued function such that $\frac{O(t^2)}{t^2}$ is bounded as $t \to 0$.

Due date: Thursday, 26/11/2020

Please, upload your solution via the SAM upload tool.

In order to access the website you will need a NETHZ-account and you will have to be connected to the ETH-network. From outside the ETH network you can connect to the ETH network via VPN. Here are instructions on how to do that.

Make sure that your solution is **one PDF file** and that its **file name** is formatted in the following way:

solution_<number exercise sheet>_<last name>_<first name>.pdf

For example: If your first name is Alice, your last name is Miller, and you want to hand-in your solution to Exercise Sheet 2, then you will have to upload your solution as **one** PDF file with the following file name:

solution_2_Miller_Alice.pdf

Solutions that fail to comply with the above requirements will be ignored.