Prof. Dr. A. Iozzi Y. Krifka

Exercise Sheet 6

Exercise 1.(Quotients of Lie groups):

Let *G* be a Lie group and let $K \leq G$ be a closed normal subgroup.

Show that G/K can be equipped with a Lie group structure such that the quotient map $\pi: G \to G/K$ is a surjective Lie group homomorphism with kernel *K*.

Exercise 2.(Joint eigenvectors):

Let *G* be a connected Lie group and let $\pi: G \to GL(V)$ be a finite-dimensional complex representation.

A *joint eigenvector of* $\{\pi(g) : g \in G\}$ is a vector $v \in V$ such that there is a smooth homomorphism $\chi : G \to \mathbb{C}$ with $\pi(g)v = \chi(g) \cdot v$ for all $g \in G$. Similarly, a *joint eigenvector of* $\{d_e\pi(X) : X \in \mathfrak{g}\}$ is a vector $v \in V$ such that there is a linear functional $\lambda : \mathfrak{g} \to \mathbb{C}$ with $d_e\pi(X)v = \lambda(X) \cdot v$ for all $X \in \mathfrak{g}$.

Show that a vector $v \in V$ is a joint eigenvector of $\{d_e \pi(X) : X \in \mathfrak{g}\}$ if and only if it is a joint eigenvector of $\{\pi(g) : g \in G\}$. Moreover, show that $\chi(\exp(X)) = e^{\lambda(X)}$ for all $X \in \mathfrak{g}$ (with $\chi : G \to \mathbb{C}$ and $\lambda : \mathfrak{g} \to \mathbb{C}$ as above).

Exercise 3.(Isomorphism theorems for Lie algebras):

Let g be a Lie algebra.

a) Let $\mathfrak{h} \leq \mathfrak{g}$ be an ideal. Show that

$$[X + \mathfrak{h}, Y + \mathfrak{h}] := [X, Y] + \mathfrak{h}$$

defines a Lie algebra structure on g/h.

b) Show that if $\varphi : \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism then

$$\mathfrak{g}/\ker\varphi \cong \operatorname{im}\varphi$$

as Lie algebras.

c) Let $\mathfrak{h} \subseteq \mathfrak{I}$ be ideals of \mathfrak{g} . Show that

$$I/h \leq g/h$$
 and $(g/h)/(I/h) \approx g/I$.

d) Let \mathfrak{h} and \mathfrak{I} be ideals of \mathfrak{g} . Show that $\mathfrak{h} + \mathfrak{I}$ and $\mathfrak{h} \cap \mathfrak{I}$ are ideals in \mathfrak{g} , and that

$$\mathfrak{h}/(\mathfrak{h} \cap I) \cong (\mathfrak{h} + I)/I$$

Exercise 4.(Solvable Lie algebras):

- a) Show that Lie subalgebras and homomorphic images of solvable Lie algebras are solvable.
- b) Show that if \mathfrak{h} and I are solvable ideals of a Lie algebra \mathfrak{g} then $\mathfrak{h}+I$ is a solvable ideal.

Hint: Use exercise 3 d)).

c) Deduce that every Lie algebra contains a unique maximal solvable ideal.

Exercise 5.(Weight spaces and ideals):

Let \mathfrak{g} be a Lie algebra, let $\mathfrak{h} \leq \mathfrak{g}$ be an ideal and let $\pi : \mathfrak{g} \to \mathfrak{gl}(V)$ a finite-dimensional complex representation. For a given linear functional $\lambda : \mathfrak{h} \to \mathbb{C}$ consider its weight space

$$V_{\lambda}^{\mathfrak{h}} := \{ v \in V \, | \, \pi(X)v = \lambda(X)v \quad \forall X \in \mathfrak{h} \}.$$

Show that every weight space $V_{\lambda}^{\mathfrak{h}}$ is invariant under $\pi(\mathfrak{g})$, i.e. $\pi(Y)V_{\lambda}^{\mathfrak{h}} \subseteq V_{\lambda}^{\mathfrak{h}}$ for every $\lambda \in \mathfrak{h}^*, Y \in \mathfrak{g}$.

Exercise 6.(Lie's theorem for Lie algebras):

Let \mathfrak{g} be a solvable Lie algebra and let $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite-dimensional complex representation.

Show that $\rho(\mathfrak{g})$ stabilizes a flag $V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_n = 0$, with codim $V_i = i$, i.e. $\rho(X)V_i \subseteq V_i$ for every $X \in V_i$, i = 1, ..., n.

Hint: Use exercise 5.

Due date: Thursday, 10/12/2020

Please, upload your solution via the SAM upload tool.

In order to access the website you will need a NETHZ-account and you will have to be connected to the ETH-network. From outside the ETH network you can connect to the ETH network via VPN. Here are instructions on how to do that.

Make sure that your solution is **one PDF file** and that its **file name** is formatted in the following way:

solution_<number exercise sheet>_<last name>_<first name>.pdf

For example: If your first name is Alice, your last name is Miller, and you want to hand-in your solution to Exercise Sheet 2, then you will have to upload your solution as **one** PDF file with the following file name:

solution_2_Miller_Alice.pdf

Solutions that fail to comply with the above requirements will be ignored.