Prof. Dr. A. Iozzi Y. Krifka

Exercise Sheet 7

Exercise 1.(Ideals and Quotients of Nilpotent Lie Algebras):

Let \mathfrak{g} be a Lie algebra and let $\mathfrak{h} \leq \mathfrak{g}$ be an ideal. We have already seen that, \mathfrak{g} is solvable if and only if \mathfrak{h} and $\mathfrak{g}/\mathfrak{h}$ are solvable.

Show that such a statement cannot hold for nilpotent g!

Exercise 2.(Adjoint of nilpotent elements):

Let $\mathfrak{g} \leq \mathfrak{gl}_n(\mathbb{C})$ be a Lie subalgebra.

Show that, if $X \in \mathfrak{g}$ is nilpotent then $\operatorname{ad}(X) \in \mathfrak{gl}(\mathfrak{g})$ is nilpotent.

Exercise 3.(Cartan's criterion for solvability):

Let \mathfrak{g} be a Lie algebra with Killing form $B_{\mathfrak{g}}$.

Show that \mathfrak{g} is solvable if and only if $B_{\mathfrak{g}}|_{\mathfrak{g}^{(1)}\times\mathfrak{g}^{(1)}} = 0$.

<u>Hint:</u> One direction is an easy verification. For the other direction you can use a theorem from class in conjunction with the fact that a Lie algebra \mathfrak{g} with an ideal $\mathfrak{h} \leq \mathfrak{g}$ is solvable if and only if both \mathfrak{h} and $\mathfrak{g}/\mathfrak{h}$ are solvable.

Exercise 4.(Direct sums of simple ideals):

Let $\mathfrak{g} = \bigoplus_{i \in I} \mathfrak{g}_i$ be the direct sum of simple ideals. Then any ideal $\mathfrak{h} \leq \mathfrak{g}$ is of the form $\mathfrak{h} = \bigoplus_{i \in I} \mathfrak{g}_i$ with $J \subset I$.

Remark: This implies immediately:

- (i) Any semisimple Lie algebras has a finite number of ideals.
- (ii) Any connected semisimple Lie group with finite center has a finite number of connected normal subgroups.

Exercise 5.(Characterization of Semi-Simplicity):

Let g be a Lie algebra. Show that the following statements are equivalent:

- (i) g is semisimple;
- (ii) g has no non-trivial abelian ideals;
- (iii) g has no non-trivial solvable ideals.

Exercise 6.(Semi-Simple Lie Algebras equal their commutator):

Let \mathfrak{g} be a Lie algebra. Show that if \mathfrak{g} is semisimple then $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$.

This is the last exercise sheet and it will not be graded.

We hope that you have had a good time in our course and wish you the best of luck in the exam.

Merry christmas and a happy new year!

Alessandra and Yannick