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Exercise 1.(Unitary Operators):

Let H be a Hilbert space and U (H) its group of unitary operators. Show that the

weak operator topology coincides with the strong operator topology on U (H).

Solution: Recall that a sequence (Tn)n∈N ⊂ U (H) of unitary operators converges to

a unitary operator T with respect to the weak operator topology if

λ(Tnx)→ λ(T x) (n→∞)

for every linear functional λ ∈ H∗ and every x ∈ H.

A sequence (Tn)n∈N ⊂U (H) of unitary operators converges to a unitary operator

T with respect to the strong operator topology if

Tnx→ T x (n→∞)

for every x ∈ H.

In order to show that the weak operator topology coincides with the strong oper-

ator topology it will be sufficient to show that a sequence (Tn)n∈N ⊂U (H) converges

with respect to the weak operator topology to T ∈ U (H) if and only if (Tn)n∈N con-

verges with respect to the strong operator topology to T .

“⇐= ”: Let Tn→ T strongly and let λ ∈ H∗,x ∈ H. Then because λ is continuous

and Tnx→ Tx we get

λ(Tnx)→ λ(T x)

as n→∞.

“ =⇒ ”: Let Tn→ T weakly and let x ∈ H. We need to see that

‖Tnx − T x‖2→ 0 (n→∞).
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We compute

‖Tnx − T x‖2 = 〈Tnx − T x,Tn − T x〉

= 〈Tnx,Tnx〉 − 〈Tnx,T x〉 − 〈T x,Tnx〉+ 〈T x,T x〉

= 〈x,x〉 − 〈Tnx,T x〉 − 〈T x,Tnx〉+ 〈x,x〉

= 2‖x‖2 −
(
〈Tnx,T x〉+ 〈Tnx,T x〉

)
= 2‖x‖2 − 2< (〈Tnx,T x〉)

→ 2‖x‖2 − 2‖T x‖2 = 2‖x‖2 − 2‖x‖2 = 0 (n→∞),

where we have used that Tn and T are unitary and that 〈·,T x〉 is a continuous linear

functional.

Exercise 2.(Compact-Open Topology):

Let X,Y ,Z be topological space, and denote by C(Y ,X) B {f : Y → X continuous}
the set of continuous maps from Y to X. The set C(Y ,X) can be endowed with the

compact-open topology, that is generated by the subbasic sets

S(K,U )B {f ∈ C(Y ,X) |f (K) ⊆U },

where K ⊆ Y is compact and U ⊆ X is open.

Prove the following useful facts about the compact-open topology.

If Y is locally compact, then:

a) The evaluation map e : C(Y ,X)×Y → X,e(f ,y)B f (y), is continuous.

b) A map f : Y ×Z→ X is continuous if and only if the map

f̂ : Z→ C(Y ,X), f̂ (z)(y) = f (y,z),

is continuous.

Solution:

a) For (f ,y) ∈ C(Y ,X) × Y let U ⊂ X be an open neighborhood of f (y). Since Y

is locally compact, continuity of f implies there is a compact neighborhood

K ⊂ Y of y such that f (K) ⊂ U . Then S(K,U ) ×K is a neighborhood of (f ,y)

in C(Y ,X)×Y taken to U by e, so e is continuous at (f ,y).

b) Suppose f : Y × Z → X is continuous. To show continuity of f̂ it suffices to

show that for a subbasic set S(K,U ) ⊂ C(Y ,X), the set f̂ −1(S(K,U )) = {z ∈
Z |f (K,z) ⊂ U } is open in Z. Let z ∈ f̂ −1(S(K,U )). Since f −1(U ) is an open

neighborhood of the compact set K × {z}, there exist open sets V ⊂ Y and
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W ⊂ Z whose product V ×W satisfies K × {z} ⊂ V ×W ⊂ f −1(U ). So W is a

neighborhood of z in f̂ −1(S(K,U )). (The hypothesis that Y is locally compact

is not needed here.)

For the converse of b) note that f is the composition Y ×Z→ Y ×C(Y ,X)→ X

of Id× f̂ and the evaluation map, so part a) gives the result.

Exercise 3.(General Linear Group GL(n,R)):

The general linear group

GL(n,R)B {A ∈Rn×n |detA , 0} ⊆R
n×n

is naturally endowed with the subspace topology of Rn×n � R
n2

. However, it can

also be seen as a subset of the space of homeomorphisms of Rn via the injection

j : GL(n,R)→Homeo(Rn),

A 7→ (x 7→ Ax).

a) Show that j(GL(n,R)) ⊂ Homeo(Rn) is a closed subset, where Homeo(Rn) ⊂
C(Rn,Rn) is endowed with the compact-open topology.

Solution: Note that

j(GL(n,R)) = {f ∈Homeo(Rn) : f (λx+y) = λf (x)+f (y) for all λ ∈R,x,y ∈Rn}.

Since evaluation is continuous also the maps

Fλ,x,y : Homeo(Rn)→R
n

f 7→ f (λx+ y)−λf (x) + f (y)

are continuous for all λ ∈R,x,y ∈Rn.

Thus,

j(GL(n,R)) =
⋂

λ∈R,x,y∈X
F−1
λ,x,y(0) ⊂Homeo(Rn)

is closed as the intersection of closed sets.

b) If we identify GL(n,R) with its image j(GL(n,R)) ⊂Homeo(Rn) we can endow

it with the induced subspace topology. Show that this topology coincides with

the usual topology coming from the inclusion GL(n,R) ⊂R
n×n.
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Solution: Consider the inclusions

i : GL(n,R)→R
n×n,

A 7→


| |

Ae1 · · · Aen
| |

 ,
where e1, . . . ,en denotes the standard basis of Rn×n.

Further, consider the maps

ϕ : Rn×n→ C(Rn,Rn),
| |
v1 · · · vn
| |

 7→ (x 7→ x1 · v1 + · · ·+ xn · vn) ,

and

ψ : C(Rn,Rn)→R
n×n,

f 7→


| |

f (e1) · · · f (en)

| |

 .
It is easy to verify that these form the following commutative diagram.

GL(n,R)

R
n×n C(Rn,Rn)

i

j

ϕ

ψ

Since both topologies under consideration on GL(n,R) come from pulling

back the topologies of R
n×n resp. C(Rn,Rn) via i resp. j they will coincide

if we can show that the maps ϕ and ψ are continuous.

The map ψ is continuous because it is the product of the evaluation maps

evei : C(Rn,Rn)→R
n,evei (f ) = f (ei)

(i = 1, . . . ,n).

Further, observe that the map

ev◦(ϕ × Id) : Rn×n ×Rn→R
n, (A,x) 7→ Ax

is continuous. This implies that ϕ is continuous.
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Hint: Exercise 2 can be useful here.

Exercise 4.(Isometry Group Iso(X)):

Let (X,d) be a compact metric space. Recall that the isometry group of X is defined

as

Iso(X) = {f ∈Homeo(X) : d(f (x), f (y)) = d(x,y) for all x,y ∈ X}.

Show that Iso(X) ⊂ Homeo(X) is compact with respect to the compact-open

topology.

Hint: Use the fact that the compact-open topology is induced by the metric of

uniform-convergence and apply Arzelà–Ascoli’s theorem.

Solution: The compact-open topology on Homeo(X) coincides with the topology

induced by the metric of uniform convergence

d∞(f ,g) = sup{d(f (x), g(x)) : x ∈ X}.

Note that by Arzelà–Ascoli a family F ⊆ C(X,X) of continuous maps is compact

if and only if F is equicontinuous, Fx = {f (x) : f ∈ F } is relatively compact for every

x ∈ X and F is closed.

Equicontinuity of F B Iso(X) is clear, because we are dealing with isometries.

Moreover, Fx = {f (x) : f ∈ Iso(X)} ⊆ X is a subset of a compact space, whence rela-

tively compact. All that is left to check is that Iso(X) is closed.

Let f ∈ C(X,X) and let (fn)n∈N ⊂ Iso(X) be a sequence converging to it. Let

x,y ∈ X then

0 ≤
∣∣∣d(f (x), f (y))− d(x,y)

∣∣∣
=

∣∣∣d(f (x), f (y))− d(fn(x), fn(y))
∣∣∣

≤
∣∣∣d(f (x), f (y))− d(fn(x), f (y))

∣∣∣+
∣∣∣d(fn(x), f (y))− d(fn(x), fn(y))

∣∣∣
≤ d(f (x), fn(x)) + d(f (y), fn(y))→ 0 (n→∞).

Hence, f is an isometry as wished for. Because f was arbitrary this shows that

Iso(X) ⊆ C(X,X) is closed.

Exercise 5.(p-adic Integers Zp):

Let p ∈N be a prime number. Recall that the p-adic integers Zp can be seen as the

subspace (an)n∈N ∈
∏
n∈N

Z/pnZ : an+1 ≡ an (mod pn)


of the infinite product

∏
n∈NZ/pnZp carrying the induced topology. Note that each
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Z/pnZ carries the discrete topology and
∏
n∈NZ/pnZ is endowed with the resulting

product topology.

a) Show that the image of Z via the embedding

ι :Z→Zp,

x 7→ (x (mod pn))n∈N

is dense. In particular, Zp is a compactification of Z.

Solution: Let (xn) ∈Zp. A neighborhood basis of (xn) is given by the sets

Bm((xn)) = {(yn) ∈Zp : x1 = y1, . . . ,xm = ym}, m ∈N.

Let m ∈ N. We want to construct an integer x ∈ Z such that ι(x) ∈ Bm((xn)).

It suffices to take a preimage x ∈ Z of xm ∈ Z/pmZ under πm : Z→ Z/pmZ.

Then we clearly obtain

xm ≡ x(mod pm),

xm−1 ≡ xm(mod pm−1) ≡ x(mod pm−1),

...

x1 ≡ x(mod p).

That is ι(x) ∈ Bm((xn)).

b) Show that the 2-adic integers Z2 are homeomorphic to the “middle thirds”

cantor set C as defined in Exercise 6b).

Solution: We will prove that the map

ϕ : C→Z2,
∞∑
n=1

εn3−n 7→

 n∑
k=1

εk
2
· 2k−1


n∈N

is a homeomorphism.

ϕ is well-defined because

ϕ

 ∞∑
n=1

εn3−n

n

≡
n∑
k=1

εk
2
· 2k−1 +

εn+1

2
· 2n ≡ ϕ

 ∞∑
n=1

εn3−n

n+1

(mod2n).

By uniqueness of 2-adic expansions ϕ is injective.
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ϕ is surjective because for every (xn)n∈N ∈Z2 we can find 2-adic expansions

xn = a(n)
0 + a(n)

1 · 2 + · · ·+ a(n)
n−1 · 2

n−1, n ∈N,

with unique a(n)
i ∈ {0,1}. By the compatibility condition in Z2

xn ≡ xn+1(mod2n)

we get that a(n)
i = a(n+1)

i for every i < n. Hence, we can write

xn = a0 + a1 · 2 + · · ·+ an−1 · 2n−1, n ∈N,

with unique ai ∈ {0,1}. Thus,

ϕ

 ∞∑
n=1

2an3−n
 = (xn)n∈N,

i.e. ϕ is surjective.

In order to prove that ϕ is continuous and open we first need to deduce the

following neat relation: For every c =
∑∞
n=1 εn3−n,d =

∑∞
n=1 δn3−n ∈ C

− log3 |d − c| ≤min{k ∈N : εk , δk} ≤ − log3 |d − c|+ 1.

Indeed, let m = min{k ∈N : εk , δk}. Then

|d − c| =

∣∣∣∣∣∣∣(δm − εm) · 3−m +
∞∑

n=m+1

(δn − εn) · 3−n
∣∣∣∣∣∣∣

≥

∣∣∣∣∣∣∣∣∣∣|δm − εm|︸    ︷︷    ︸
=2

·3−m −

∣∣∣∣∣∣∣
∞∑

n=m+1

(δn − εn) · 3−n
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

≥ 2
3m
−

∞∑
n=m+1

|δn − εn| · 3−n

≥ 2
3m
−

∞∑
n=m+1

2 · 3−n =
2

3m
− 1

3m
= 3−m.

Applying the logarithm to base 3 on both sides yields the first inequality.

The second inequality follows from the following easier computation.

|d − c| =

∣∣∣∣∣∣∣
∞∑
n=m

(δn − εn) · 3−n
∣∣∣∣∣∣∣ ≤

∞∑
n=m

2 · 3−n =
1

3m−1

=⇒ log3 |d − c| ≤ −m+ 1.
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Now, let c =
∑∞
n=1 εn3−n ∈ C and consider a neighborhood Bm(ϕ(c)). Then

d =
∞∑
n=1

δn3−n ∈ ϕ−1(Bm(ϕ(c)))

⇐⇒
l∑
k=1

εk
2
· 2k−1 =

l∑
k=1

δk
2
· 2k−1, ∀1 ≤ l ≤m

⇐⇒ εk = δk , ∀k = 1, . . . ,m

⇐⇒ min{k ∈N : εk , δk} ≥m+ 1

By the previously deduced relation this readily implies

Bm+1(ϕ(c)) ⊂ ϕ(C ∩ (−3−m + c,c+ 3−m)) ⊂ Bm(ϕ(c)).

It follows that ϕ is continuous and open.

Exercise 6†.(Homeomorphism Group Homeo(X)):

a) Let X be a compact Hausdorff space. Show that (Homeo(X),◦) is a topological

group when endowed with the compact-open topology.

Solution: Denote by m : Homeo(X) ×Homeo(X)→ Homeo(X) the composi-

tionm(f ,g) = f ◦g and by i : Homeo(X)→Homeo(X) the inversion i(f ) = f −1.

We need to see that m and i are continuous.

i) m is continuous: We want to show that m is continuous at any tuple

(f ,g) ∈ Homeo(X) ×Homeo(X). Thus let S(K,U ) 3 f ◦ g be a subbasis

neighborhood of f ◦g, i.e. K ⊂ X is compact and U ⊂ X is open such that

f (g(K)) ⊂ U . Observe that g(K) is compact and is contained in f −1(U )

which is open. Because X is (locally) compact we may find an open set

V ⊂ X with compact closure V such that

g(K) ⊂ V ⊂ V ⊂ f −1(U ).

It is now easy to verify that W := S(V ,U )× S(K,V ) is an open neighbor-

hood of (f ,g) such that m(W ) ⊂ S(K,U ). Indeed, (f ,g) is by construction

of V contained in W and for any (h1,h2) ∈W we get

h2(K) ⊂ V ⊂ V ⊂ h−1
1 (U ).

Hence, m is continuous at every point of Homeo(X)×Homeo(X).
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ii) i is continuous: Let f ∈ Homeo(X), K ⊂ X compact and U ⊂ X open.

Then

i(f ) ∈ S(K,U ) ⇐⇒ f −1(K) ⊂U ⇐⇒ K ⊂ f (U )

⇐⇒ f (U c) = f (U )c ⊂ Kc ⇐⇒ f ∈ S(U c,Kc).

Observe that U c is compact as a closed subset of the compact space X

and that Kc is open as the complement of a (compact) closed set.

This shows that i−1(S(K,U )) = S(U c,Kc) for every element S(K,U ) of a

subbasis for the compact-open topology on Homeo(X), whence i is con-

tinuous.

b) The objective of this exercise is to show that (Homeo(X),◦) will not necessar-

ily be a topological group if X is only locally compact.

Consider the “middle thirds” Cantor set

C =

 ∞∑
n=1

εn3−n : εn ∈ {0,2} for each n ∈N

 ⊂ [0,1]

in the unit interval. We define the sets Un = C ∩ [0,3−n] and Vn = C ∩ [1 −
3−n,1]. Further we construct a sequence of homeomorphisms hn ∈Homeo(C)

as follows:

• hn(x) = x for all x ∈ C \ (Un ∪Vn),

• hn(0) = 0,

• hn(Un+1) =Un,

• hn(Un \Un+1) = Vn+1,

• hn(Vn) = Vn \Vn+1.

These restrict to homeomorphisms hn|X on X := C \ {0}.

Show that the sequence (hn|X)n∈N ⊂Homeo(X) converges to the identity on X

but the sequence ((hn|X)−1)n∈N ⊂Homeo(X) of their inverses does not!

Remark: However, ifX is locally compact and locally connected then Homeo(X)

is a topological group.

Solution: The following picture gives a pictorial description of what h1 does

on the Cantor set C.
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0 1
3

2
3

1

0
1
3

2
3 1

h1

U2 U1 \U2 V1

U1 V1 \V2 V2

Since hn(0) = 0 we obtain indeed a homeomorphism hn|X ∈ Homeo(X) by

restriction to X = C \ {0}. Let us first see that the sequence (hn|X)n∈N indeed

converges to Id ∈Homeo(X). For that let S(K,U ) be a subbasis neighborhood

of Id, i.e. K is a compact subset of X contained in some open set U ⊂ X.

Therefore we can find an M ∈N such that UM and K are disjoint.

If 1 < K then there is also an N ≥M such that Vn and K are disjoint. In this

case hn|K is the identity and hence in S(K,U ) for all n ≥N .

If 1 ∈ K then there is anN ≥M such that VN is contained inU . Consequently,

we have

hn(K \Vn) = K \Vn, hn(K ∩Vn) ⊂ Vn ⊂ VN ⊂U,

for all n ≥N .

In any case the sequence (hn|X)n∈N will be in S(K,U ) for large enough n such

that limn→∞hn|X = Id. On the other hand h−1
n (1) ∈ Un for every n ∈ N such

that limn→∞h
−1
n (1) = 0. Thus the sequence (h−1

n |X)n∈N certainly does not con-

verge to Id.

Remark: Note that we actually needed to remove 0 from C for this construc-

tion to work. In fact, the sequence hn does not converge to Id in Homeo(C):

Let K = [0,1/9]∩C,U = [0,1/2)∩C. Then S(K,U ) is again a neighborhood of

Id. However, Un ⊂ K for every n ≥ 2 and Vn+1 ⊂U c which implies that

hn(Un \Un+1) ⊂U c,

i.e. hn < S(K,U ).

c) Let S1 ⊂C\{0} denote the circle. Show that Homeo(S1) is not locally compact.

Remark: In fact, Homeo(M) is not locally compact for any manifold M.
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Solution: We will prove a more general fact, namely that Homeo(M) is not

locally compact for any compact manifold M. Note that we can think of M as

a compact metric space (M,d) by Urysohn’s metrization theorem. In the case

when M is a smooth manifolds this is even easier to see by endowing it with

a Riemannian metric. This puts us now in the favorable position of being

able to identify the compact-open topology on Homeo(X) with the topology

of uniform convergence.

We denote by

d∞(f ,g) := sup{d(f (x), g(x)) : x ∈M}

the metric of uniform convergence on Homeo(M). Further denote by B∞f (r)

the ball of radius r > 0 about a homeomorphism f ∈ Homeo(M). In order to

show that Homeo(M) is not locally compact we will construct in every ε > 0

ball about the identity B∞Id(ε) a sequence of homeomorphisms (fk)k∈N with no

convergent subsequence.

Let ε > 0 and denote B = B∞Id(ε). Further, let x0 ∈M and choose a coordinate

chart ϕ : U ⊂ Bε/2(x0) → R
n centered at x0 (i.e. ϕ(x0) = 0) contained in the

ε/2-ball Bε/2(x0) about x0 in M. Consider the homeomorphisms

ψk : B1(0)→ B1(0),x 7→ ‖x‖kx

on the closed unit ball B1(0) in R
n which fix 0 ∈Rn and the boundary n-sphere

pointwise. Note that the sequence (ψk)k∈N converges pointwise to

ψ∞ =

x, if x ∈ ∂B1(0),

0, if x ∈ B1(0).

Now, define

fk(x) :=

x, if x < ϕ−1(B1(0)),

ϕ−1(ψk(ϕ(x))), if x ∈ ϕ−1(B1(0)).

It is easy to see that the maps fk : M → M are indeed homeomorphisms:

fk |ϕ−1(B1(0))c = Id : ϕ−1(B1(0))c → ϕ−1(B1(0))c is a homeomorphism, ϕ−1 ◦ψk ◦
ϕ : ϕ−1(B1(0))→ ϕ−1(B1(0)) is a homeomorphism and both coincide onϕ−1(∂B1(0)).

Further, the homeomorphisms fk map the ε/2-ball Bε/2(x0) to itself and fix x0.

Therefore,

d(fk(x),x) ≤ d(fk(x), fk(x0)︸︷︷︸
=x0

) + d(x0,x) < ε,

for every x ∈ Bε/2(x0), and clearly fk(x) = x for every x < Bε/2(x0). Hence, the

sequence (fk)k∈N is in B∞ε (Id).
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However, the sequence (fk)k∈N converges pointwise to

f∞(x) =

x, if x < ϕ−1(B1(0)),

x0, if x ∈ ϕ−1(B1(0)),

If there were a subsequence (fkl )l∈N converging to some f ∈ Homeo(M) uni-

formly then this sequence would also converge pointwise to f , i.e. f needs

to coincide with f∞. But f∞ is not even continuous which contradicts our

assumption of f ∈ Homeo(M). Therefore (fk)k∈N ⊂ B∞ε (Id) has no uniformly

convergent subsequences.
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