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SoLuTIiON EXERCISE SHEET 2

Exercise 1.(Identity Neighborhoods Generate Connected Groups):

Let G be a connected topologcial group, U C G an open neighborhood of the iden-
tity and U" :={g;---2,141,..., g, € U}. Show that G =, U".
Hint: You may assume that ¢! € U for every g € U. Why?

Solution: By replacing U with U N U~! if necessary we may assume that U is a
symmetric neighborhood U = U~! of the identity e € G.

Observe that H = | J;~; U" is a group. Indeed, for every g, ---g,,,h; ---h,, € H also
(817+8u)+ (B )™ = guoog Byl -y € UM C HL

Further, U is open and therefore also every

is open as the union of open sets. Recall that right translation by group elements is

a homeomorphism.

Hence, also H = | J;~; U" is open, i.e. H C G is an open subgroup. In the lecture
we have learned that open subgroups are always closed. Because G is connected we
have therefore H =0 or H = G. Since H is non-empty the assertion follows.

O

Exercise 2.(Transitive Group Actions):

Let G be a topological group, X a topological space and y: GxX — X a continuous
transitive group action, i.e. for any two x,y € X there is g € G such that u(g,x) =

§X=9-
a) Show that if G is compact then X is compact.

b) Show that if G is connected then X is connected.

Solution: Let xjy € X and consider the map

p:G-X,
g+ u(g, xo)-

Because y is a continuous action the map ¢ is continuous too. Further the action
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p is transitive, i.e. for every y € X there is a g € G such that p(g,x9) = v. In other
words, ¢ is surjective.

Part a) follows from the fact that X = ¢(G) is compact as the image of a compact
group.

Part b) follows from the fact that continuous maps send connected components

to connected components and again that ¢(G) = X. O

Exercise 3.(Examples of Haar Measures):

a) Let us consider the three-dimensional Heisenberg group H = R >, R?, where
11 : R — Aut(IR?) is defined by

o)
z Z+ Xy

for all x,y,z € R. Thus the group operation is given by

(x1,91,21) * (X2, 92,22) = (X1 + X2, V1 + V2,21 + 22 + X172)

and it is easy to see that it can be identified with the matrix group

1x,9,z€ R

uy

IR
o o =
S = R
— e N

Verify that the Lebesgue measure is the Haar measure of R, R? and that the

group is unimodular.

Solution: Denote by y the measure on H induced by the Lebesgue measure

on R3. In order to show that y is unimodular we need to see that

forevery f e C.(H), he H.
Let hy = (x1,91,21) € H and f € C.(H). We compute
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J.(/\(hfl)f)(xw% 22)dx2dy2dz)
- Jf(xl +X2,91 +92,21 + 22 + X192)dx2dYrdz;
Fubini Jf(xl + X2, 91 +¥2,22 + (21 + x192))d22dX2dY,
transl. inv. jf(xl + %X, 91 + V2, 22)d2,dx2dY,
F &Ll Jf(xlxyl +92,22)dx2dy,dz;

F &ti.
< ff(xl,yz,zz)dedyzdzz.

This shows left-invariance.

[toth 022,221y
= jf(xz + X1,V + V1,22 + 21 + X201 )dxody,dz,
Fubini Jf(xl +X2,91 + 92,22 + (21 + x291))dz2d x5y
transl. inv. jf(xl + X2, 91 + V2, 22)d22dx,dY,
F &t Jf(xl,yl +v2,27)dx,dy,dz,

F & t.i.
< ff(xl,yz,Zz)dxzdydez-

This shows right-invariance. Therefore y is a left- and right-invariant Haar

measure on H and H is unimodular.

a b
pP= ca,belRa=05%.
0 a!l

Show that % db is the left Haar measure and dadb is the right Haar measure.

O]

b) Let

In particular, P is not unimodular.

b
Solution: Let [g 1] € P and f € C.(P). We compute
a
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RN e
Jolls o B

i (ax ay+bx1] , dx

(-

Il
~

f 0 alxt! (ax)? Y

we change coordinates to % = ax,y = ay which has Jacobi determinant a?

[ (x p+abx7!)dx
- —dv
J f 0 1 ]352 y
( (x p+abx™'), _dx
- dp—
J f 0 %1 ] yfz
(% 7 \dx
= —dT.
J f 0 32_1)3?2 Y

This shows left-invariance for the measure % dy as claimed.

We will now see that dadb is right-invariant:

;[p [g aljll]f ][z xl_’l]dxdy
-1 (3 ;I)(Z ai]]dxciy

r -1
= f( ax bx+a y]]dxdy:...

J 0 alx!

we change coordinates to % = ax,y = a'y which has Jacobi determinant 1
X balx+yp
= dxdy
il s
F&ti Xy -
= dxd
Jils s

This shows right-invariance. Since both measures clearly do not coincide P is
not unimodular.

O

¢) Let G:=GL,(R) C R"* denote the group of invertible matrices over R. Let A,
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denote the Lebesgue measure on R . Prove that
dm(x) := |detx| " dA,2(x)
defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.

Solution: As GL,(R) = det_l(IR \ {O}) is open in R", /\”ZIGL,,(IR)
zero measure to non-empty open and finite measure to compact subsets of
GL,(R) (if K € GL,,(R) is compact in GL,,(IR) and ¢/ an open cover of K in R",
then Y NGL,(R) :={UNGL,(R); U € U} is an open cover of K in GL,,(RR), thus
it admits a finite subcover and hence so does U/). As det is continuous and
does not vanish on GL,(IR), the above also holds for dm(g) := |detg|™ dA,2(g).
It remains to show that m is invariant. To this end we note that for g € GL,(IR),
if g=1(g1,...,8,) and h € GL,,(IR), then

assigns non-

hg = (hgi,...,hgy) (g € Mat,(R)),

so that the left-action of & on GL,(IR) can be viewed as a restriction of a
diagonal matrix diag(h,...,h) € R""? acting on a subset of R”. Let f e
Cc(GL,(R)), then

| 1oLt trgldetst™ et

-

= | o Trcrm (ig)f (hg)|dethg|™ |deth|" dA,:(g)
-

= Ier,wr)(hg)f (hg)|dethg| ™" |deth|" dA,:(g)
-

= gL, mr)(8)f (8)detg]™ dA,2(g),

where in the end we used the substitution formula for the map diag(h,...,h).
This proves that m is a left Haar measure on GL,(RR). The measure is also

right-invariant, because the map
§1h
I ad

gnh

does also have Jacobian |deth|" (for example because gh = (h'g') and the Ja-
cobian of transposition — being an idempotent map - is equal to 1). Thus
GL,,(R) is unimodular. O

Let G = SL,(IR) denote the group of matrices of determinant 1 in R™". For a
Borel subset B C SL,(IR) define

m(B):= A,2({tg;g € B,t €[0,1]}).




Introduction to Lie Groups Solution Exercise Sheet 2

Show that m is a well-defined bi-invariant Haar measure on SL,,(IR).
Solution: Let us first check that for any Borel subset B C SL,,(IR) the cone
C(B)={tb:beB,te]0,1]}

is a Borel subset of R". To this end we note first that

where
C'(B)={tb:beB,te(0,1]}.

It clearly suffices to show that C’(B) is Borel. To this end let
GL,(R) = {g € GL,(R);|detg| = 1}.

Note that GL.(RR) = SL,,(IR) < C,, where C, is the group with two elements.
As GL!(R) is homeomorphic to a disjoint union of two copies of SL,(IR), B is
Borel in GL(IR). Define

W:GL,(R) > GLy(R), g+~

Jdetgl

This is a Borel map and therefore
C’(B)=W¥ ' (B)ndet™1(0,1]

is measurable.

The final claim now follows immediately from the argument in part|c), which
realizes the action of an element g € SL,,(IR) on R" as a diagonal action of n
copies of g, together with the fact that ®,A,> = |det®| A, 2 for linear @, detg =
1, C(gB) = gC(B) and C(Bg) = C(B)g for all g € SL,(R) and B € SL,,(R) Borel.

O

Let G denote the ax + b group defined as

G:{[” f];aembem}

Note that every element in G can be written in a unique fashion as a product

SETRA Y

where a € R* and p € R, which yields a coordinate system IR* xR < G. Prove

of the form:
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that

dmia, p) =

1

dad
o] 42 9P

defines a left Haar measure on G. Calculate Ag(«, f) for « € R* and g € R.

Solution: We use the coordinate system ¢ : Aff;(R) 3 (a,b) > (a,a~'b) € R* x

R. On R* xR we define the measure dv(a, f) :=

L

=l dadp and we claim that

(p~1),v is a left-Haar measure on Aff; (R).

Let f € CC(Affl(lR)) and denote
cated by subscript — follows

¥(a) := xa, then for left-translation - indi-

, ey e
( )*v(f(xlf)):qu JR || 4B |da
_ c(r fo@‘l(xa,/j’+(xa)‘1y)d/3 in
JR<| JR la|
(trans. inv.) = :RX ;Wdﬁ)da
clp fov(vla)p
(i/(x) = x) ZJRUX |z,b£a>| )|¢’<a>|da]dﬂ
X X § fO(P_l(a'ﬁ) -1
(p(R") = R*) :JRUX - da]d/s:«p v (f)

and thus we have indeed found a left Haar measure. For right translation —

indicated by superscript — follows

Xy
- xy r r f( 1)0(p_1(a,/3)
((P 1)*V(f( 1)):ule JR |a| dﬁ da
c fo(p‘l(xa,x‘l/}er‘ly)
:quX JR |6¥| dﬁ da
c (¢ fo(p‘l(xa,x‘lﬁ)
(trans. inv.) = dplda
JR*| JR |6¥|
r fop~xa,p
(subst. = xp) :JIRX |x|[L{$dﬁ] da

(as above)

Hence AAffl(IR)(x 31’) =|x[7L.

x| (@) v(f).

Exercise 4.(Haar Measure and Transitive Actions):

Let G be a locally compact Hausdorff group and let X be a topological space.
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Suppose that G acts on X continuously and transitively. Let o € X, and denote

: G — X,g > g-o. Further, let
H :=Stab(o) ={he G|h-0 =0}

be the stabilizer of o.

Suppose there is a continuous section 0: X — G of 1, i.e. mo o =Idy.

a) Show that ¢: X xH — G, (x,h) — o(x)h is a homeomorphism.

Hint: Find a continuous inverse!

Solution: We define ¢: G — X x H via

forall g€ G.
Note that
o(n(g))-o=m(o(n(g)) =m(g)=g"0,

whence o(r(g))"'g-0 =0 and o(n(g))"'g € H = Stab(o). This shows that ¢
is well-defined. Moreover, ¢ is continuous as a composition of continuous

functions.
We will now show that ¢ is the inverse of 1, i.e. po@ =1dg and poip =Idxypy.
Let g € G. We compute:

O]

b) Suppose there is a (left) Haar measure v on H and suppose there is a left

G-invariant Borel regular measure A on X.
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Show that the push-forward measure ¥,(1®v) is a (left) Haar measure on G.

Solution: All we need to see is that the push-forward measure p = P, (1 ® V)

is left G-invariant.

Let f € C.(G) and gy € G. We compute:

| staograngr= | staoptnmaiavinn
G JXxH
(Fubini) = f(goo(x)h)dv(h)dA(x)
JXJH
=, Hf(O(go %) (g0 - X)™' g0 (x) ) dv () d A(x)
€H
(left invariance of v) = [ f(o(go-x)h)dv(h)dA(x)
JXJH
(left G-invariance of 1) = ([ f(o(x)h)dv(h)dA(x)
JX JH
= | f(g)du(g)
JG

¢) Find a Haar measure on Iso(IR?).

Solution: Note that Iso(IR?) acts continuously and transitively on R?. Indeed,
any translation T,: R? —» R%,y > x +y (x € R?) is a Euclidean isometry, that

maps 0 to x.

In fact, this construction yields a continuous section o': R? - Iso(IRZ),x — T,
and we can apply part|b)l Indeed, the Lebesgue measure A on R? is Iso(IR?)-
invariant, and it can be shown that the stabilizer of 0 is given by the orthogo-
nal group O(2,R). By part|b), a Haar measure on Iso(IR?) is given by the push-

forward measure y := 1),(1 ® v) where v is a left Haar measure on O(2, R).

We will apply part [b)] again to compute a Haar measure on O(2,IR) more ex-
plicitly. Observe that O(2,IR) acts transitively on the group with two ele-
ments {+1} via k x ¢ := det(k) - ¢ for every k € O(2,R),e € {£1}. We obtain
a surjective map p = det: O(2,R) — {£1},k > det(k)- 1 = det(k). A section
T: {1} = O(2,R) of det is given by

which is continuous because {+1} carries the discrete topology. The stabilizer
of 1 is then det™}(1) N O(2,R) = SO(2,R) and the usual Lebesgue measure on
[0, 27t) pushes-forward to a left Haar measure & = ¢.(Aljo,27)) on SO(2,R) via
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the map

¢:[0,21t) — SO(2,R),

cos(0) —sin(G)]

0 |—>(
sin(60) cos(0)

Clearly, an invariant measure on {1} is given by the counting measure. There-

fore, a left Haar measure v on O(2,R) is given by

21

J-O(z,m)f(k)dv(k): Zj f(t(€)-¢(0)) do

2nf(( co‘s(6) —sin(@)]] 0
esin(0) ecos(0)

for every f € C.(O(2,R)).

Putting everything together we obtain

du(g) = " k) dv(k)d

Joof@de= | rrmaar
_ m cos(0) —sin(6)
_J;R%:ZiiJ; f(Tx[esin(Q) ECOS(Q)]] 46 dx

for every f € C.(Iso(IR?)). O

Exercise 5.(Aut(R", +) = GL(n,IR)):

For a topological group G, we denote by Aut(G) the group of bijective, continu-
ous homomorphisms of G with continuous inverse. Consider the locally compact
Hausdorff group G = (IR",+) where n € INj.

a) Show that Aut(G), i.e. the group of bijective homomorphisms which are home-

omorphisms as well, is given by GL,(IR).

Solution: Let ¢ € Aut(IR"), then ¢ is in particular additive and thus ¢(nv) =
ne(v) forallveR", foralln e Z. Let me Z,n€ N and g = % € Q, then

np(qv) = p(nqv) = p(mv) = me(v) = @(q)e(v) =qp(v)

and ¢ is Q-linear. IR-linearity follows from continuity of ¢ and thus ¢ €
EndR(RR"). As ¢ is invertible, any choice of basis realizes ¢ as an element in
GL,,(R). It is clear that for such a choice of a basis, any g € GL,,(IR) defines an
element in Aut(IR"”) and that the correspondence is 1-1 and obeys the various

10
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b)

group structures (on Aut(G) and GL,(RR)).

Show that mod : Aut(G) — Ry is given by a + [deta| .

Solution:

The n-dimensional Lebesgue measure A, on IR” clearly is a Haar measure for

R™: it is translation invariant and

_ (Wmr)"

€(0,00) (r>0,veR"),
[(5+1)

(B ()

showing that it is positive on open and finite on compact subsets of IR". Let
f € C.(R"), g € GL,(IR), then

Al =g [ flendetgld, v
=|detg|™ | f(v)dA,(v).

R?l

As any Borel measure on R” is uniquely determined by its values on C.(R"),

it follows g, A, = |detg|7l A, and hence the claim.
O

Prove that there exists a discontinuous, bijective homomorphism from the

additive group (IR, +) to itself.

Solution: Using Zorn’s lemma, construct a Q-basis of IR containing 1. Denote
this basis by {x;;i € I'} for any infinite index set I containing 0 such that xy = 1
(I is infinite as otherwise IR would be algebraic over Q). Fix i,j € I \ {0} such

that i # j and define a linear map ¢ : R — R by Q-linear extension of

X]' if k = i,
Vkel:p(xg)={x; if k =j,
x; else.

Let (g,)nen € QN Cauchy such that lim,,_,, g, = x;, then

lim ¢(g,) = lim g, = x; # x; = (x;) = p(lim g,,).

n—-o0 n—00

Exercise 6.(Iterated Quotient Measures):

Let G be a locally compact Hausdorff group. Show that if H; < H, < G are closed

11
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subgroups and Hy, H, G are all unimodular then there exist invariant measures dx,
dy, dz on G/H;,G/H, and H,/H; respectively such that

dx = dz|d
ofea= [ ([ )iy
for all f € C.(G/Hy).

Solution: We will use the existence of quotient measures here extensively. Note
that Hy, H, and G are unimodular such that the necessary and sufficient condition

for the existence of quotient measures is always met.

Let dg be a Haar measure on G and dh; a Haar measure on H;. We have Ag|g, =

1 = Ay, such that there is a left-invariant measure dx on G/H; satisfying
j F(g)dg = j J- F(xhy)dhydx,
G G/H, JH,
for every F € C.(G).

Let dh; be a Haar measure on H,. We have Ay, |y, =1 = Ay, such that there is a

left-invariant measure dz on H,/H; satisfying

j F(hz)dhzzf f F(zhy)dh,dz,
H, H,/H; JH,

for every F € C.(H,).

Finally, we have Ag|y, =1 = Ap, such that there is a left-invariant measure dy

fzf(g)dng f F(vh)dhydy,
G G/H, JH,

on G/H, satisfying

for every F € C.(G).
We claim that these measures satisfy the hypothesis.

Let f € C.(G/H;). By a lemma from the lecture we may find an F € C.(G) such
that

flgHy) = L F(ghy)dhy.

12
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We compute

r

j f(x)dx = J- F(xhy)dhidx
G/H, G/H, JH,

r

= | F(g)dg

C

R

-
= F(yhy)dhydy

Je/n, JH,

r r

= J F(yzhy)dhydzdy
G/H, JH,/H, JH,

r r

- f(y2)dzdy.

G/H, JH,/H,

C

C

Exercise 7.(No SL,(IR)-invariant Measure on SL,(IR)/P):

Let G =SL;,(R) and P be the subgroup of upper triangular matrices. Show directly

that there is no (non-trivial) finite G-invariant measure on G/P.

Hint: Identify G/P = $' = R U {co} with the unit circle and consider a rotation

cos@ sinfO
—sin@ cosB

1 t

0 1)
Solution: Recall that G = SL(2,R) acts on the upper half plane H = {z € C|Imz >
0} c € and its boundary JH = R U {oo} C C via Mébius transformations

[a b] az+b
Z= .
c d cz+d

Note that SL(2,R) acts transitively on JIH and the stabilizer of oo is the subgroup

and a translation

of upper triangular matrices P. We may therefore identify G/P = R U {co}.

Suppose there is a finite G-invariant measure m on G/P = RU {oo}. Consider the
restriction y = m|R of this measure to the real line. Observe that G acts on the real

line via translations

Lot E=&+t E,telR
0 1' - s’ ’ 4

such that y is in particular a translation invariant measure on RR, i.e. y is a Haar
measure on IR. By uniqueness of Haar measures y must be a multiple of the
Lebesgue measure on IR. Since m is finite y is the zero measure. That means that m

is a positive multiple of the dirac measure at co,i.e. m = A9, for some A > 0. Now

13
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consider the rotation
(2) 0 1 1
i(z) = Z=——
-1 0 z

that sends oo to 0. By G-invariance we must have
A0 = 1(A:00) = A+ g

such that A = 0; in contradiction to our assumption. O]

14



