Introduction to Lie Groups

Autumn 2020

Prof. Dr. A. Iozzi Y. Krifka

Solution Exercise Sheet 2

Exercise 1.(Identity Neighborhoods Generate Connected Groups):

Let *G* be a connected topological group, $U \subset G$ an open neighborhood of the identity and $U^n := \{g_1 \cdots g_n | g_1, \dots, g_n \in U\}$. Show that $G = \bigcup_{n=1}^{\infty} U^n$.

<u>Hint:</u> You may assume that $g^{-1} \in U$ for every $g \in U$. Why?

Solution: By replacing U with $U \cap U^{-1}$ if necessary we may assume that U is a symmetric neighborhood $U = U^{-1}$ of the identity $e \in G$.

Observe that $H = \bigcup_{n=1}^{\infty} U^n$ is a group. Indeed, for every $g_1 \cdots g_n, h_1 \cdots h_m \in H$ also

$$(g_1 \cdots g_n) \cdot (h_1 \cdots h_m)^{-1} = g_1 \cdots g_n \cdot h_m^{-1} \cdots h_1^{-1} \in U^{n+m} \subset H.$$

Further, *U* is open and therefore also every

$$U^n = \bigcup_{g \in U^{m-1}} U \cdot g \subset G$$

is open as the union of open sets. Recall that right translation by group elements is a homeomorphism.

Hence, also $H = \bigcup_{n=1}^{\infty} U^n$ is open, i.e. $H \subset G$ is an open subgroup. In the lecture we have learned that open subgroups are always closed. Because *G* is connected we have therefore $H = \emptyset$ or H = G. Since *H* is non-empty the assertion follows.

Exercise 2.(Transitive Group Actions):

Let *G* be a topological group, *X* a topological space and $\mu : G \times X \to X$ a continuous transitive group action, i.e. for any two $x, y \in X$ there is $g \in G$ such that $\mu(g, x) = g \cdot x = y$.

- a) Show that if *G* is compact then *X* is compact.
- b) Show that if *G* is connected then *X* is connected.

Solution: Let $x_0 \in X$ and consider the map

$$\varphi: G \to X,$$
$$g \mapsto \mu(g, x_0).$$

Because μ is a continuous action the map φ is continuous too. Further the action

 μ is transitive, i.e. for every $y \in X$ there is a $g \in G$ such that $\mu(g, x_0) = y$. In other words, φ is surjective.

Part a) follows from the fact that $X = \varphi(G)$ is compact as the image of a compact group.

Part b) follows from the fact that continuous maps send connected components to connected components and again that $\varphi(G) = X$.

Exercise 3.(Examples of Haar Measures):

a) Let us consider the *three-dimensional Heisenberg group* $H = \mathbb{R} \rtimes_{\eta} \mathbb{R}^2$, where $\eta : \mathbb{R} \to \operatorname{Aut}(\mathbb{R}^2)$ is defined by

$$\eta(x) \begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} y \\ z + xy \end{pmatrix},$$

for all $x, y, z \in \mathbb{R}$. Thus the group operation is given by

$$(x_1, y_1, z_1) * (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2)$$

and it is easy to see that it can be identified with the matrix group

$$H \cong \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$$

Verify that the Lebesgue measure is the Haar measure of $\mathbb{R} \rtimes_{\eta} \mathbb{R}^2$ and that the group is unimodular.

Solution: Denote by μ the measure on *H* induced by the Lebesgue measure on \mathbb{R}^3 . In order to show that μ is unimodular we need to see that

$$\mu(\lambda(h)f) = \mu(f) = \mu(\rho(h)f)$$

for every $f \in C_c(H)$, $h \in H$.

Let $h_1 = (x_1, y_1, z_1) \in H$ and $f \in C_c(H)$. We compute

$$\int (\lambda(h_1^{-1})f)(x_2, y_2, z_2)dx_2dy_2dz_2$$

=
$$\int f(x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2)dx_2dy_2dz_2$$

Fubini
=
$$\int f(x_1 + x_2, y_1 + y_2, z_2 + (z_1 + x_1y_2))dz_2dx_2dy_2$$

transl. inv.
=
$$\int f(x_1 + x_2, y_1 + y_2, z_2)dz_2dx_2dy_2$$

F. & t.i.
=
$$\int f(x_1, y_1 + y_2, z_2)dx_2dy_2dz_2$$

F. & t.i.
=
$$\int f(x_1, y_2, z_2)dx_2dy_2dz_2.$$

This shows left-invariance.

$$\int (\rho(h_1)f)(x_2, y_2, z_2)dx_2dy_2dz_2$$

= $\int f(x_2 + x_1, y_2 + y_1, z_2 + z_1 + x_2y_1)dx_2dy_2dz_2$
Fubini
= $\int f(x_1 + x_2, y_1 + y_2, z_2 + (z_1 + x_2y_1))dz_2dx_2dy_2$
transl_inv. $\int f(x_1 + x_2, y_1 + y_2, z_2)dz_2dx_2dy_2$
F. & t.i. $\int f(x_1, y_1 + y_2, z_2)dx_2dy_2dz_2$
F. & t.i. $\int f(x_1, y_2, z_2)dx_2dy_2dz_2$.

This shows right-invariance. Therefore μ is a left- and right-invariant Haar measure on H and H is unimodular.

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a, b \in \mathbb{R}, a \neq 0 \right\}.$$

Show that $\frac{da}{a^2} db$ is the left Haar measure and da db is the right Haar measure. In particular, *P* is *not* unimodular.

Solution: Let
$$\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in P$$
 and $f \in C_c(P)$. We compute

$$\int \left(\lambda \left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}^{-1} \right) f \right) \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \frac{dx}{x^2} dy$$
$$= \int f \left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \right) \frac{dx}{x^2} dy$$
$$= \int f \begin{pmatrix} ax & ay + bx^{-1} \\ 0 & a^{-1}x^{-1} \end{pmatrix} a^2 \frac{dx}{(ax)^2} dy = \dots$$

we change coordinates to $\bar{x} = ax$, $\bar{y} = ay$ which has Jacobi determinant a^2

$$\dots = \int f \begin{pmatrix} \bar{x} & \bar{y} + ab\bar{x}^{-1} \\ 0 & \bar{x}^{-1} \end{pmatrix} \frac{d\bar{x}}{\bar{x}^2} d\bar{y}$$
$$= \int f \begin{pmatrix} \bar{x} & \bar{y} + ab\bar{x}^{-1} \\ 0 & \bar{x}^{-1} \end{pmatrix} d\bar{y} \frac{d\bar{x}}{\bar{x}^2}$$
$$= \int f \begin{pmatrix} \bar{x} & \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix} \frac{d\bar{x}}{\bar{x}^2} d\bar{y}.$$

This shows left-invariance for the measure $\frac{dx}{x^2} dy$ as claimed. We will now see that *dadb* is right-invariant:

$$\int \left(\rho \left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \right) f \right) \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} dx dy$$
$$= \int f \left(\begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \right) dx dy$$
$$= \int f \left(\begin{pmatrix} ax & bx + a^{-1}y \\ 0 & a^{-1}x^{-1} \end{pmatrix} \right) dx dy = \dots$$

we change coordinates to $\bar{x} = ax$, $\bar{y} = a^{-1}y$ which has Jacobi determinant 1

$$\dots = \int f\left(\begin{pmatrix} \bar{x} & ba^{-1}\bar{x} + \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix} \right) d\bar{x}d\bar{y}$$

$$\stackrel{F \& t.i}{=} \int f\left(\begin{pmatrix} \bar{x} & \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix} \right) d\bar{x}d\bar{y}$$

This shows right-invariance. Since both measures clearly do not coincide *P* is *not* unimodular.

c) Let $G := \operatorname{GL}_n(\mathbb{R}) \subseteq \mathbb{R}^{n^2}$ denote the group of invertible matrices over \mathbb{R} . Let λ_{n^2}

denote the Lebesgue measure on \mathbb{R}^{n^2} . Prove that

$$\mathrm{d}m(x) := |\mathrm{det}x|^{-n} \,\mathrm{d}\lambda_{n^2}(x)$$

defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.

Solution: As $\operatorname{GL}_n(\mathbb{R}) = \operatorname{det}^{-1}(\mathbb{R} \setminus \{0\})$ is open in \mathbb{R}^{n^2} , $\lambda_{n^2}|_{\operatorname{GL}_n(\mathbb{R})}$ assigns nonzero measure to non-empty open and finite measure to compact subsets of $\operatorname{GL}_n(\mathbb{R})$ (if $K \subseteq \operatorname{GL}_n(\mathbb{R})$ is compact in $\operatorname{GL}_n(\mathbb{R})$ and \mathcal{U} an open cover of K in \mathbb{R}^{n^2} , then $\mathcal{U} \cap \operatorname{GL}_n(\mathbb{R}) := \{U \cap \operatorname{GL}_n(\mathbb{R}); U \in \mathcal{U}\}$ is an open cover of K in $\operatorname{GL}_n(\mathbb{R})$, thus it admits a finite subcover and hence so does \mathcal{U}). As det is continuous and does not vanish on $\operatorname{GL}_n(\mathbb{R})$, the above also holds for $dm(g) := |\operatorname{det} g|^{-n} d\lambda_{n^2}(g)$. It remains to show that m is invariant. To this end we note that for $g \in \operatorname{GL}_n(\mathbb{R})$, if $g = (g_1, \ldots, g_n)$ and $h \in \operatorname{GL}_n(\mathbb{R})$, then

$$hg = (hg_1, \dots, hg_2) \quad (g \in \operatorname{Mat}_n(\mathbb{R})),$$

so that the left-action of h on $\operatorname{GL}_n(\mathbb{R})$ can be viewed as a restriction of a diagonal matrix $\operatorname{diag}(h, \dots, h) \in \mathbb{R}^{n^2 \times n^2}$ acting on a subset of \mathbb{R}^{n^2} . Let $f \in C_c(\operatorname{GL}_n(\mathbb{R}))$, then

$$\begin{split} \int_{\mathbb{R}^{n^2}} \mathbb{1}_{\mathrm{GL}_n(\mathbb{R})}(g) f(hg) |\det g|^{-n} d\lambda_{n^2}(g) \\ &= \int_{\mathbb{R}^{n^2}} \mathbb{1}_{h \mathrm{GL}_n(\mathbb{R})}(hg) f(hg) |\det hg|^{-n} |\det h|^n d\lambda_{n^2}(g) \\ &= \int_{\mathbb{R}^{n^2}} \mathbb{1}_{\mathrm{GL}_n(\mathbb{R})}(hg) f(hg) |\det hg|^{-n} |\det h|^n d\lambda_{n^2}(g) \\ &= \int_{\mathbb{R}^{n^2}} \mathbb{1}_{\mathrm{GL}_n(\mathbb{R})}(g) f(g) |\det g|^{-n} d\lambda_{n^2}(g), \end{split}$$

where in the end we used the substitution formula for the map diag(h, ..., h). This proves that *m* is a left Haar measure on $\text{GL}_n(\mathbb{R})$. The measure is also right-invariant, because the map

$$g \mapsto \left(\begin{array}{c} g_1 h \\ \vdots \\ g_n h \end{array}\right)$$

does also have Jacobian $|\det h|^n$ (for example because $gh = (h^t g^t)^t$ and the Jacobian of transposition – being an idempotent map – is equal to 1). Thus $\operatorname{GL}_n(\mathbb{R})$ is unimodular.

d) Let $G = SL_n(\mathbb{R})$ denote the group of matrices of determinant 1 in $\mathbb{R}^{n \times n}$. For a Borel subset $B \subseteq SL_n(\mathbb{R})$ define

$$m(B) := \lambda_{n^2} (\{tg; g \in B, t \in [0, 1]\}).$$

Show that *m* is a well-defined bi-invariant Haar measure on $SL_n(\mathbb{R})$.

Solution: Let us first check that for any Borel subset $B \subseteq SL_n(\mathbb{R})$ the cone

$$C(B) = \{tb : b \in B, t \in [0, 1]\}$$

is a Borel subset of \mathbb{R}^{n^2} . To this end we note first that

$$\mathcal{C}(B) = \mathcal{C}'(B) \cup \{0\},\$$

where

$$\mathcal{C}'(B) = \{tb : b \in B, t \in (0, 1]\}.$$

It clearly suffices to show that C'(B) is Borel. To this end let

$$\operatorname{GL}_{n}^{1}(\mathbb{R}) = \{g \in \operatorname{GL}_{n}(\mathbb{R}); |\operatorname{det} g| = 1\}.$$

Note that $\operatorname{GL}_n^1(\mathbb{R}) \cong \operatorname{SL}_n(\mathbb{R}) \rtimes C_2$, where C_2 is the group with two elements. As $\operatorname{GL}_n^1(\mathbb{R})$ is homeomorphic to a disjoint union of two copies of $\operatorname{SL}_n(\mathbb{R})$, *B* is Borel in $\operatorname{GL}_n^1(\mathbb{R})$. Define

$$\Psi: \operatorname{GL}_n(\mathbb{R}) \to \operatorname{GL}_n^1(\mathbb{R}), \quad g \mapsto \frac{1}{\sqrt[\eta]{|\operatorname{det}g|}}g.$$

This is a Borel map and therefore

$$\mathcal{C}'(B) = \Psi^{-1}(B) \cap \det^{-1}(0, 1]$$

is measurable.

The final claim now follows immediately from the argument in part c), which realizes the action of an element $g \in SL_n(\mathbb{R})$ on \mathbb{R}^{n^2} as a diagonal action of *n* copies of *g*, together with the fact that $\Phi_*\lambda_{n^2} = |\det\Phi|\lambda_{n^2}$ for linear Φ , $\det g =$ 1, C(gB) = gC(B) and C(Bg) = C(B)g for all $g \in SL_n(\mathbb{R})$ and $B \subseteq SL_n(\mathbb{R})$ Borel.

e) Let *G* denote the ax + b group defined as

$$G = \left\{ \begin{pmatrix} a & b \\ & 1 \end{pmatrix}; a \in \mathbb{R}^{\times}, b \in \mathbb{R} \right\}$$

Note that every element in *G* can be written in a unique fashion as a product of the form: ((f + g)) = (f + g)

$$\left(\begin{array}{cc}a&b\\&1\end{array}\right) = \left(\begin{array}{cc}\alpha\\&1\end{array}\right) \left(\begin{array}{cc}1&\beta\\&1\end{array}\right)$$

where $\alpha \in \mathbb{R}^{\times}$ and $\beta \in \mathbb{R}$, which yields a coordinate system $\mathbb{R}^{\times} \times \mathbb{R} \leftrightarrow G$. Prove

that

$$\mathrm{d}m(\alpha,\beta) = \frac{1}{|\alpha|} \,\mathrm{d}\alpha \,\mathrm{d}\beta$$

defines a left Haar measure on *G*. Calculate $\Delta_G(\alpha, \beta)$ for $\alpha \in \mathbb{R}^{\times}$ and $\beta \in \mathbb{R}$.

Solution: We use the coordinate system $\varphi : \operatorname{Aff}_1(\mathbb{R}) \ni (a, b) \mapsto (a, a^{-1}b) \in \mathbb{R}^{\times} \times \mathbb{R}$. On $\mathbb{R}^{\times} \times \mathbb{R}$ we define the measure $d\nu(\alpha, \beta) := \frac{1}{|\alpha|} d\alpha d\beta$ and we claim that $(\varphi^{-1})_*\nu$ is a left-Haar measure on $\operatorname{Aff}_1(\mathbb{R})$.

Let $f \in C_c(Aff_1(\mathbb{R}))$ and denote $\psi(\alpha) := x\alpha$, then for left-translation – indicated by subscript – follows

$$\begin{split} (\varphi^{-1})_* \nu \Big(f_{\binom{x \ y}{1}} \Big) &= \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f_{\binom{x \ y}{1}} \circ \varphi^{-1}(\alpha, \beta)}{|\alpha|} d\beta \right) d\alpha \\ &= \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1} \Big(x\alpha, \beta + (x\alpha)^{-1} y \Big)}{|\alpha|} d\beta \right) d\alpha \\ (\text{trans. inv.}) &= \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1} \big(x\alpha, \beta \big)}{|\alpha|} d\beta \right) d\alpha \\ (\psi'(x) = x) &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{\times}} \frac{f \circ \varphi^{-1} \big(\psi(\alpha), \beta \big)}{|\psi(\alpha)|} \big| \psi'(\alpha) \big| d\alpha \right) d\beta \\ (\psi(\mathbb{R}^{\times}) = \mathbb{R}^{\times}) &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}^{\times}} \frac{f \circ \varphi^{-1} \big(\alpha, \beta \big)}{|\alpha|} d\alpha \right) d\beta = (\varphi^{-1})_* \nu(f) \end{split}$$

and thus we have indeed found a left Haar measure. For right translation – indicated by superscript – follows

$$(\varphi^{-1})_* \nu \left(f^{\binom{x \ y}{1}} \right) = \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f^{\binom{x \ y}{1}} \circ \varphi^{-1}(\alpha, \beta)}{|\alpha|} \, d\beta \right) d\alpha$$

$$= \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(x\alpha, x^{-1}\beta + x^{-1}y)}{|\alpha|} \, d\beta \right) d\alpha$$

(trans. inv.)
$$= \int_{\mathbb{R}^{\times}} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(x\alpha, x^{-1}\beta)}{|\alpha|} \, d\beta \right) d\alpha$$

(subst. $\beta \mapsto x\beta$)
$$= \int_{\mathbb{R}^{\times}} |x| \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(x\alpha, \beta)}{|\alpha|} \, d\beta \right) d\alpha$$

(as above)
$$= |x| (\varphi^{-1})_* \nu(f).$$

Hence $\Delta_{\operatorname{Aff}_1(\mathbb{R})} \begin{pmatrix} x & y \\ 1 \end{pmatrix} = |x|^{-1}$.

Exercise 4.(Haar Measure and Transitive Actions):

Let G be a locally compact Hausdorff group and let X be a topological space.

Suppose that *G* acts on *X* continuously and transitively. Let $o \in X$, and denote $\pi: G \to X, g \mapsto g \cdot o$. Further, let

$$H := \operatorname{Stab}(o) = \{h \in G \mid h \cdot o = o\}$$

be the stabilizer of *o*.

Suppose there is a continuous section $\sigma: X \to G$ of π , i.e. $\pi \circ \sigma = Id_X$.

a) Show that $\psi: X \times H \to G, (x, h) \mapsto \sigma(x)h$ is a homeomorphism. <u>Hint:</u> Find a continuous inverse!

Solution: We define $\varphi \colon G \to X \times H$ via

$$\varphi(g) \coloneqq (\pi(g), \sigma(\pi(g))^{-1}g)$$

for all $g \in G$.

Note that

$$\sigma(\pi(g)) \cdot o = \pi(\sigma(\pi(g)) = \pi(g) = g \cdot o$$

whence $\sigma(\pi(g))^{-1}g \cdot o = o$ and $\sigma(\pi(g))^{-1}g \in H = \text{Stab}(o)$. This shows that φ is well-defined. Moreover, φ is continuous as a composition of continuous functions.

We will now show that φ is the inverse of ψ , i.e. $\psi \circ \varphi = \text{Id}_G$ and $\varphi \circ \psi = \text{Id}_{X \times H}$. Let $g \in G$. We compute:

$$\psi(\varphi(g)) = \psi(\pi(g), \sigma(\pi(g))^{-1}g)$$
$$= \sigma(\pi(g))\sigma(\pi(g))^{-1}g = g$$

Let $x \in X, h \in H$. We compute:

$$\varphi(\psi(x,h)) = \varphi(\sigma(x)h)$$

$$= (\pi(\sigma(x)h), \sigma(\pi(\sigma(x)h))^{-1}\sigma(x)h)$$

$$= (\sigma(x)h \cdot o, \sigma(\sigma(x)h \cdot o)^{-1}\sigma(x)h)$$

$$= (\sigma(x) \cdot o, \sigma(\sigma(x) \cdot o)^{-1}\sigma(x)h)$$

$$= (x, \sigma(x)^{-1}\sigma(x)h)$$

$$= (x, h).$$

b) Suppose there is a (left) Haar measure ν on H and suppose there is a left *G*-invariant Borel regular measure λ on X.

Show that the push-forward measure $\psi_*(\lambda \otimes \nu)$ is a (left) Haar measure on *G*.

Solution: All we need to see is that the push-forward measure $\mu = \psi_*(\lambda \otimes \nu)$ is left *G*-invariant.

Let $f \in C_c(G)$ and $g_0 \in G$. We compute:

$$\begin{split} &\int_{G} f(g_{0}g) d\mu(g) = \int_{X \times H} f(g_{0}\psi(x,h)) d(\lambda \otimes \nu)(x,h) \\ & (\text{Fubini}) = \int_{X} \int_{H} f(g_{0}\sigma(x)h) d\nu(h) d\lambda(x) \\ & = \int_{X} \int_{H} f(\sigma(g_{0} \cdot x) \underbrace{\sigma(g_{0} \cdot x)^{-1}g_{0}\sigma(x)}_{\in H} h) d\nu(h) d\lambda(x) \\ & (\text{left invariance of } \nu) = \int_{X} \int_{H} f(\sigma(g_{0} \cdot x)h) d\nu(h) d\lambda(x) \\ & (\text{left } G\text{-invariance of } \lambda) = \int_{X} \int_{H} f(\sigma(x)h) d\nu(h) d\lambda(x) \\ & = \int_{G} f(g) d\mu(g) \end{split}$$

i.	-		-

c) Find a Haar measure on $Iso(\mathbb{R}^2)$.

Solution: Note that $Iso(\mathbb{R}^2)$ acts continuously and transitively on \mathbb{R}^2 . Indeed, any translation $T_x \colon \mathbb{R}^2 \to \mathbb{R}^2$, $y \mapsto x + y$ ($x \in \mathbb{R}^2$) is a Euclidean isometry, that maps 0 to x.

In fact, this construction yields a continuous section $\sigma : \mathbb{R}^2 \to \operatorname{Iso}(\mathbb{R}^2), x \mapsto T_x$, and we can apply part b). Indeed, the Lebesgue measure λ on \mathbb{R}^2 is $\operatorname{Iso}(\mathbb{R}^2)$ invariant, and it can be shown that the stabilizer of 0 is given by the orthogonal group $O(2, \mathbb{R})$. By part b), a Haar measure on $\operatorname{Iso}(\mathbb{R}^2)$ is given by the pushforward measure $\mu := \psi_*(\lambda \otimes \nu)$ where ν is a left Haar measure on $O(2, \mathbb{R})$.

We will apply part b) again to compute a Haar measure on $O(2, \mathbb{R})$ more explicitly. Observe that $O(2, \mathbb{R})$ acts transitively on the group with two elements $\{\pm 1\}$ via $k * \varepsilon := \det(k) \cdot \varepsilon$ for every $k \in O(2, \mathbb{R}), \varepsilon \in \{\pm 1\}$. We obtain a surjective map $p = \det: O(2, \mathbb{R}) \rightarrow \{\pm 1\}, k \mapsto \det(k) \cdot 1 = \det(k)$. A section $\tau: \{\pm 1\} \rightarrow O(2, \mathbb{R})$ of det is given by

$$\tau(\varepsilon) = \begin{pmatrix} 1 & 0 \\ 0 & \varepsilon \end{pmatrix},$$

which is continuous because $\{\pm 1\}$ carries the discrete topology. The stabilizer of 1 is then det⁻¹(1) $\cap O(2, \mathbb{R}) = SO(2, \mathbb{R})$ and the usual Lebesgue measure on $[0, 2\pi)$ pushes-forward to a left Haar measure $\xi = \varphi_*(\lambda|_{[0, 2\pi)})$ on SO(2, \mathbb{R}) via

the map

$$\varphi \colon [0, 2\pi) \longrightarrow \mathrm{SO}(2, \mathbb{R}),$$
$$\theta \longmapsto \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Clearly, an invariant measure on $\{\pm 1\}$ is given by the counting measure. Therefore, a left Haar measure ν on $O(2, \mathbb{R})$ is given by

$$\begin{split} \int_{O(2,\mathbb{R})} f(k) \, d\nu(k) &= \sum_{\varepsilon = \pm 1} \int_0^{2\pi} f\left(\tau(\varepsilon) \cdot \varphi(\theta)\right) \, d\theta \\ &= \sum_{\varepsilon = \pm 1} \int_0^{2\pi} f\left(\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \varepsilon \sin(\theta) & \varepsilon \cos(\theta) \end{pmatrix} \right) \, d\theta \end{split}$$

for every $f \in C_c(O(2, \mathbb{R}))$.

Putting everything together we obtain

$$\int_{\mathrm{Iso}(\mathbb{R}^2)} f(g) d\mu(g) = \int_{\mathbb{R}^2} \int_{O(2,\mathbb{R})} f(T_x k) d\nu(k) dx$$
$$= \int_{\mathbb{R}^2} \sum_{\varepsilon = \pm 1} \int_0^{2\pi} f\left(T_x \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \varepsilon \sin(\theta) & \varepsilon \cos(\theta) \end{pmatrix} \right) d\theta \, dx$$

for every $f \in C_c(\operatorname{Iso}(\mathbb{R}^2))$.

Exercise 5. $(\operatorname{Aut}(\mathbb{R}^n, +) \cong \operatorname{GL}(n, \mathbb{R}))$:

For a topological group *G*, we denote by Aut(*G*) the group of bijective, continuous homomorphisms of *G* with continuous inverse. Consider the locally compact Hausdorff group $G = (\mathbb{R}^n, +)$ where $n \in \mathbb{N}_0$.

a) Show that Aut(G), i.e. the group of bijective homomorphisms which are homeomorphisms as well, is given by $GL_n(\mathbb{R})$.

Solution: Let $\varphi \in \operatorname{Aut}(\mathbb{R}^n)$, then φ is in particular additive and thus $\varphi(nv) = n\varphi(v)$ for all $v \in \mathbb{R}^n$, for all $n \in \mathbb{Z}$. Let $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and $q = \frac{m}{n} \in \mathbb{Q}$, then

$$n\varphi(qv) = \varphi(nqv) = \varphi(mv) = m\varphi(v) \implies \varphi(q)\varphi(v) = q\varphi(v)$$

and φ is Q-linear. \mathbb{R} -linearity follows from continuity of φ and thus $\varphi \in$ End_R(\mathbb{R}^n). As φ is invertible, any choice of basis realizes φ as an element in GL_n(\mathbb{R}). It is clear that for such a choice of a basis, any $g \in$ GL_n(\mathbb{R}) defines an element in Aut(\mathbb{R}^n) and that the correspondence is 1-1 and obeys the various

group structures (on Aut(*G*) and $GL_n(\mathbb{R})$).

b) Show that mod : Aut(*G*) $\rightarrow \mathbb{R}_{>0}$ is given by $\alpha \mapsto |\det \alpha|^{-1}$.

Solution:

The *n*-dimensional Lebesgue measure λ_n on \mathbb{R}^n clearly is a Haar measure for \mathbb{R}^n : it is translation invariant and

$$\lambda_n \Big(B_r(v) \Big) = \frac{(\sqrt{\pi}r)^n}{\Gamma(\frac{n}{2}+1)} \in (0,\infty) \quad (r > 0, v \in \mathbb{R}^n),$$

showing that it is positive on open and finite on compact subsets of \mathbb{R}^n . Let $f \in C_c(\mathbb{R}^n)$, $g \in GL_n(\mathbb{R})$, then

$$\int_{\mathbb{R}^n} f(gv) d\lambda_n(v) = \frac{1}{|\det g|} \int_{\mathbb{R}^n} f(gv) |\det g| d\lambda_n(v)$$
$$= |\det g|^{-1} \int_{\mathbb{R}^n} f(v) d\lambda_n(v).$$

As any Borel measure on \mathbb{R}^n is uniquely determined by its values on $C_c(\mathbb{R}^n)$, it follows $g_*\lambda_n = |\det g|^{-1}\lambda_n$ and hence the claim.

c) Prove that there exists a discontinuous, bijective homomorphism from the additive group $(\mathbb{R}, +)$ to itself.

Solution: Using Zorn's lemma, construct a Q-basis of \mathbb{R} containing 1. Denote this basis by $\{x_i; i \in I\}$ for any infinite index set *I* containing 0 such that $x_0 = 1$ (*I* is infinite as otherwise \mathbb{R} would be algebraic over Q). Fix $i, j \in I \setminus \{0\}$ such that $i \neq j$ and define a linear map $\varphi : \mathbb{R} \to \mathbb{R}$ by Q-linear extension of

$$\forall k \in I : \varphi(x_k) = \begin{cases} x_j & \text{if } k = i, \\ x_i & \text{if } k = j, \\ x_k & \text{else.} \end{cases}$$

Let $(q_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ Cauchy such that $\lim_{n \to \infty} q_n = x_i$, then

$$\lim_{n\to\infty}\varphi(q_n)=\lim_{n\to\infty}q_n=x_i\neq x_j=\varphi(x_i)=\varphi(\lim_{n\to\infty}q_n).$$

Exercise 6.(Iterated Quotient Measures):

Let *G* be a locally compact Hausdorff group. Show that if $H_1 \le H_2 \le G$ are closed

_

11

subgroups and H_1, H_2, G are all unimodular then there exist invariant measures dx, dy, dz on $G/H_1, G/H_2$ and H_2/H_1 respectively such that

$$\int_{G/H_1} f(x)dx = \int_{G/H_2} \left(\int_{H_2/H_1} f(yz)dz \right) dy$$

for all $f \in C_c(G/H_1)$.

Solution: We will use the existence of quotient measures here extensively. Note that H_1 , H_2 and G are unimodular such that the necessary and sufficient condition for the existence of quotient measures is always met.

Let dg be a Haar measure on G and dh_1 a Haar measure on H_1 . We have $\Delta_G|_{H_1} \equiv 1 \equiv \Delta_{H_1}$ such that there is a left-invariant measure dx on G/H_1 satisfying

$$\int_G F(g)dg = \int_{G/H_1} \int_{H_1} F(xh_1)dh_1dx,$$

for every $F \in C_c(G)$.

Let dh_2 be a Haar measure on H_2 . We have $\Delta_{H_2}|_{H_1} \equiv 1 \equiv \Delta_{H_1}$ such that there is a left-invariant measure dz on H_2/H_1 satisfying

$$\int_{H_2} F(h_2) dh_2 = \int_{H_2/H_1} \int_{H_1} F(zh_1) dh_1 dz,$$

for every $F \in C_c(H_2)$.

Finally, we have $\Delta_G|_{H_2} \equiv 1 \equiv \Delta_{H_2}$ such that there is a left-invariant measure dy on G/H_2 satisfying

$$\int_G F(g)dg = \int_{G/H_2} \int_{H_2} F(yh_2)dh_2dy,$$

for every $F \in C_c(G)$.

We claim that these measures satisfy the hypothesis.

Let $f \in C_c(G/H_1)$. By a lemma from the lecture we may find an $F \in C_c(G)$ such that

$$f(gH_1) = \int_{H_1} F(gh_1)dh_1.$$

We compute

$$\begin{split} \int_{G/H_1} f(x) dx &= \int_{G/H_1} \int_{H_1} F(xh_1) dh_1 dx \\ &= \int_G F(g) dg \\ &= \int_{G/H_2} \int_{H_2} F(yh_2) dh_2 dy \\ &= \int_{G/H_2} \int_{H_2/H_1} \int_{H_1} F(yzh_1) dh_1 dz dy \\ &= \int_{G/H_2} \int_{H_2/H_1} f(yz) dz dy. \end{split}$$

Exercise 7. (No $SL_2(\mathbb{R})$ -invariant Measure on $SL_2(\mathbb{R})/P$):

Let $G = SL_2(\mathbb{R})$ and *P* be the subgroup of upper triangular matrices. Show directly that there is no (non-trivial) finite *G*-invariant measure on *G*/*P*.

<u>Hint:</u> Identify $G/P \cong \mathbb{S}^1 \cong \mathbb{R} \cup \{\infty\}$ with the unit circle and consider a rotation

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

and a translation

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.$$

Solution: Recall that $G = SL(2, \mathbb{R})$ acts on the upper half plane $\mathbb{H} = \{z \in \mathbb{C} | \operatorname{Im} z > 0\} \subset \widehat{\mathbb{C}}$ and its boundary $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\} \subset \widehat{\mathbb{C}}$ via Möbius transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = \frac{az+b}{cz+d}.$$

Note that SL(2, \mathbb{R}) acts transitively on $\partial \mathbb{H}$ and the stabilizer of ∞ is the subgroup of upper triangular matrices *P*. We may therefore identify $G/P \cong \mathbb{R} \cup \{\infty\}$.

Suppose there is a finite *G*-invariant measure *m* on $G/P \cong \mathbb{R} \cup \{\infty\}$. Consider the restriction $\mu = m|_{\mathbb{R}}$ of this measure to the real line. Observe that *G* acts on the real line via translations

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} . \xi = \xi + t, \qquad \xi, t \in \mathbb{R},$$

such that μ is in particular a translation invariant measure on \mathbb{R} , i.e. μ is a Haar measure on \mathbb{R} . By uniqueness of Haar measures μ must be a multiple of the Lebesgue measure on \mathbb{R} . Since *m* is finite μ is the zero measure. That means that *m* is a positive multiple of the dirac measure at ∞ , i.e. $m = \lambda \cdot \delta_{\infty}$ for some $\lambda > 0$. Now

consider the rotation

$$i(z) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot z = -\frac{1}{z}$$

that sends ∞ to 0. By G-invariance we must have

$$\lambda \cdot \delta_{\infty} = i_*(\lambda \cdot \delta_{\infty}) = \lambda \cdot \delta_0$$

such that $\lambda = 0$; in contradiction to our assumption.