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Exercise 1.(Related Vector Fields):

Let M, N be smooth manifolds and let ϕ : M → N be a smooth map. Recall that

two vector fields X ∈ Vect(M), X ′ ∈ Vect(N ) are called ϕ-related if

dpϕ(Xp) = X ′ϕ(p)

for every p ∈M.

Show that [X,Y ] is ϕ-related to [X ′ ,Y ′] if X ∈ Vect(M) is ϕ-related to X ′ ∈
Vect(N ) and Y ∈ Vect(M) is ϕ-related to Y ′ ∈ Vect(N ).

Solution: Let f ∈ C∞(N ) be a smooth function on N and X,X ′ ,Y ,Y ′ vector fields

on M and N as above.

Let p ∈M. We compute

[X ′ ,Y ′]ϕ(p)f = X ′ϕ(p)(Y
′f )−Y ′ϕ(p)(X

′f )

= (dpϕ(Xp))(Y ′f )− (dpϕ(Yp))(X ′f )

= Xp((Y ′f ) ◦ϕ)−Yp((X ′f ) ◦ϕ).

Now, note that

(Y ′f )(ϕ(q)) = Y ′ϕ(q)f = (dqϕ(Yq))f = Yq(f ◦ϕ), ∀q ∈M,

because Y and Y ′ are ϕ-related and analogously

(X ′f )(ϕ(q)) = X ′ϕ(q)f = (dqϕ(Xq))f = Xq(f ◦ϕ), ∀q ∈M.

Therefore

Xp((Y ′f ) ◦ϕ)−Yp((X ′f ) ◦ϕ) = Xp(Y (f ◦ϕ))−Yp(X(f ◦ϕ))

= [X,Y ]p(f ◦ϕ)

= dpϕ([X,Y ])f .

This shows that

dpϕ([X,Y ]) = [X ′ ,Y ′]ϕ(p),

i.e. [X,Y ] and [X ′ ,Y ′] are ϕ-related.
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Exercise 2.(Leibniz Rule):

Let A,B : (−ε,ε) → R
n×n be smooth curves and define ϕ : (−ε,ε) → R

n×n as the

product ϕ(t) := A(t)B(t). Show that

ϕ′(t) = A′(t)B(t) +A(t)B′(t)

for every t ∈ (−ε,ε).

Solution: Note that the ij-entry of ϕ(t) is

ϕij(t) =
n∑
k=1

Aik(t)Bkj(t)

for every t ∈ (−ε,ε).

Differentiating each entry yields

ϕ′ij(t) =
n∑
k=1

A′ik(t)Bkj(t) +
n∑
k=1

Aik(t)B
′
kj(t)

= (A′(t)B(t))ij + (A(t)B′(t))ij ∀t ∈ (−ε,ε)

such that

ϕ′(t) = A′(t)B(t) +A(t)B′(t)

as claimed.

Exercise 3.(Some Lie Algebras):

a) Let M, N be smooth manifolds and let f : M → N be a smooth map of

constant rank r. By the constant rank theorem we know that the level set

L = f −1(q) is a regular submanifold of M of dimension dimM − r for every

q ∈N . Show that one may canonically identify

TpL � kerdpf

for every p ∈ L = f −1(q).

Solution: Since L = f −1(q) is a regular submanifold of M we may think of the

tangent space TpL as a subspace of the tangent space TpM. We will first show

that TpL ⊆ kerdpf . Let v ∈ TpL and let γ : (−ε,ε) → L = f −1(q) be a smooth

curve in L such that γ(0) = p and γ ′(0) = v. Then f (γ(t)) = q for all t ∈ (−ε,ε),
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i.e. f ◦γ is the constant curve. It follows that

dpf (v) = dγ(0)f (γ ′(0)) =
d
dt

∣∣∣∣∣
t=0
f (γ(t)) = 0.

In particular, v ∈ kerdpf as claimed.

Finally, note that kerdpf is a subspace of TpM of dimension

dimkerdpf = dimTpM − rankdpf = dimM − r = dimL = dimTpL.

Therefore TpL is a linear subspace of kerdpf of maximal dimension such that

TpL = kerdpf .

b) Use part a) to compute the Lie algebras of the Lie groups O(n,R), O(p,q),

U (n), Sp(2n,C), B(n) andN (n) where B(n) is the group of real invertible upper

triangular matrices and N (n) is the subgroup of B(n) with only ones on the

diagonal.

Solution: Note that all of the listed Lie groups are subgroups of GL(n,K)

that are also regular submanifolds (K = R or C). In particular the inclusion

maps yield injective Lie algebra homomorphisms. This implies that the cor-

responding Lie algebras can be canonically identified with Lie subalgebras of

glnK. Hence the Lie bracket will be given by the ambient Lie bracket [·, ·] of

glnK. Identifying glnK � TI GL(n,K) � K
n×n the Lie bracket is given by the

commutator

[A,B] = AB−BA

as was proved in the lecture.

(i) O(n,R): Consider the function f1 : GL(n,R)→R
n×n given by

f1(A) = ATA

for every A ∈ GL(n,R). It is easy to check that f1 has constant rank and

that

O(n) = f −1
1 (I).

By part a)

o(n) := Lie(O(n)) � TIO(n) � kerdIf1 < glnR.

Let X ∈Rn×n � TI GL(n,R). We compute

dIf1(X) =
d
dt

∣∣∣∣∣
t=0

(I + tX)t(I + tX)

= Xt +X
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where we have used exercise 2 in the last equality. Therefore

o(n) = {X ∈ glnR : Xt +X = 0}.

(ii) O(p,q): Consider the function f2 : GL(n,R)→R
n×n given by

f2(A) = AT Ip,qA

for every A ∈GL(n,R), where

Ip,q = diag(1, . . . ,1︸ ︷︷ ︸
p-times

,−1, . . . ,−1︸     ︷︷     ︸
q-times

).

It is easy to check that f2 has constant rank and that

O(p,q) = f −1
2 (Ip,q).

By part a)

o(p,q) := Lie(O(p,q)) � TIO(p,q) � kerdIf2 < glnR.

Let X ∈Rn×n � TI GL(n,R). We compute

dIf2(X) =
d
dt

∣∣∣∣∣
t=0

(I + tX)tIp,q(I + tX)

= XtIp,q + Ip,qX

where we have used exercise 2 in the last equality. Therefore

o(p,q) = {X ∈ glnR : XtIp,q + Ip,qX = 0}.

(iii) U (n): Consider the function f3 : GL(n,C)→C
n×n given by

f3(A) = A∗A

for every A ∈ GL(n,C). It is easy to check that f3 has constant rank and

that

U (n) = f −1
3 (I).

By part a)

u(n) := Lie(U (n)) � TIU (n) � kerdIf3 < glnC.
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Let X ∈Cn×n � TI GL(n,C). We compute

dIf3(X) =
d
dt

∣∣∣∣∣
t=0

(I + tX)∗(I + tX)

= X∗ +X

where we have used exercise 2 in the last equality. Therefore

u(n) = {X ∈ glnC : X∗ +X = 0}.

(iv) Sp(2n,C): Consider the function f4 : GL(n,C)→C
n×n given by

f4(A) = AtFA

for every A ∈GL(n,C) where

F =

 0 I

−I 0

 .
It is easy to check that f4 has constant rank and that

Sp(2n,C) = f −1
4 (F).

By part a)

sp(2n,C) := Lie(Sp(2n,C)) � TI Sp(2n,C) � kerdIf4 < glnC.

Let X ∈Cn×n � TI GL(n,C). We compute

dIff (X) =
d
dt

∣∣∣∣∣
t=0

(I + tX)tF(I + tX)

= XtF +FX

where we have used exercise 2 in the last equality. Therefore

sp(2n,C) = {X ∈ glnC : XtF +FX = 0}.

(v) B(n): Consider the function f5 : GL(n,R)→R
n×n given by

f5(A) =


0 · · · · · · 0

A21
. . .

...
...

. . .
. . .

...

An1 · · · An,n−1 0


for every A ∈ GL(n,R). It is easy to check that f5 has constant rank and
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that

B(n) = f −1
5 (0).

By part a)

b(n) := Lie(B(n)) � TIB(n) � kerdIf5 < glnR.

Let X ∈Rn×n � TI GL(n,R). We compute

dIf5(X) =
d
dt

∣∣∣∣∣
t=0
f5(I + tX)

=


0 · · · · · · 0

X21
. . .

...
...

. . .
. . .

...

Xn1 · · · Xn,n−1 0


.

Therefore

b(n) =



X11 · · · X1n

. . .
...

0 Xnn

 ∈Rn×n
 .

(vi) N (n): Consider the function f6 : GL(n,R)→R
n×n given by

f6(A) =


X11 0
...

. . .

Xn1 · · · Xnn


for every A ∈ GL(n,R). It is easy to check that f6 has constant rank and

that

N (n) = f −1
6 (I).

By part a)

n(n) := Lie(N (n)) � TIN (n) � kerdIf6 < glnR.

Let X ∈Rn×n � TI GL(n,R). We compute

dIf6(X) =
d
dt

∣∣∣∣∣
t=0
f6(I + tX)

=


X11 0
...

. . .

Xn1 · · · Xnn

 .
Therefore

n(n) =



0 ∗ ∗
...
. . . ∗

0 · · · 0

 ∈Rn×n
 .
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Exercise 4.(Easy Direction of Frobenius’ Theorem):

Let M be a smooth manifold and let D be a distribution on M. Show that D is

involutive if it is completely integrable.

Solution: Let U ⊂ M be an open set and {X1, . . . ,Xn} a local basis of D defined

on U . Further, let q ∈ U and suppose q is contained in an integral submanifold

ϕ : N ↪→M of D such that dpϕ(TpN ) = Dp for every p ∈ N , where ϕ : N ↪→M is an

injective immersion. Let p ∈ ϕ−1(q) and choose open neighborhoods V ′ ⊂ N about

p and U ′ ⊂ U about q such that ϕ|V ′ : V ′ → U ′ is a smooth embedding. By using a

local slice chart it is easy to see that the vector fields {Y1, . . . ,Yn} defined via

dp′ϕ(Yi) = (Xi)ϕ(p′) ∀p′ ∈ V ′ ∀i = 1, . . . ,n (??)

are smooth vector fields on V ′ ⊂ N . Here we have used that {(X1)ϕ(p′), . . . , (Xn)ϕ(p′)}
is a basis of Dϕ(p′) = dp′ϕ(Tp′N ) and that the differential of dp′ϕ is injective for

every p′ ∈ V ′. Note that (??) means that Yi is ϕ-related to Xi for every i = 1, . . . ,n.

By exercise 1 also [Yi ,Yj ] is ϕ-related to [Xi ,Xj ], i.e.

[Xi ,Xj ]ϕ(p′) = dp′ϕ[Yi ,Yj ]p′ ,

for every i, j = 1, . . . ,n. Because {Y1, . . . ,Yn} are smooth vector fields on V ′ ⊂ N
also [Yi ,Yj ]p′ is a smooth vector field on V ′ ⊂ N . This implies that [Xi ,Xj ]ϕ(p′) ∈
dp′ϕ(Tp′N ) = Dϕ(p′) for every p′ ∈ V ′; in particular [Xi ,Xj ]q ∈ Dq. Therefore D is

involutive.

Exercise 5.(Distributions and Lie Subalgebras):

a) Let M be a smooth manifold, X,Y ∈ Vect(M) vector fields on M, and f ,g ∈
C∞(M) smooth functions. Show that

[f X,gY ] = f g[X,Y ] + f (Xg)Y − g(Y f )X.

Solution: Let h ∈ C∞(M) and p ∈M. We compute

([f X,gY ]ph) = f (p)Xp(g(Yh))− g(p)Yp(f (Xh))

= f (p)(Xpg)(Yph) + f (p)g(p)Xp(Yh)

− g(p)(Ypf )(Xph)− g(p)f (p)Yp(Xh)

= f (p)g(p)([X,Y ]ph) + f (p)(Xpg)(Yph)− g(p)(Ypf )(Xph).
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b) Show that the Lie algebra h of a Lie subgroup H of a Lie group G determines

a left-invariant involutive distribution.

Remark: Part a) is not necessarily needed for part b).

Solution: Let ι : H ↪→ G be a Lie subgroup and let X1, . . . ,Xn be a basis of

TeH � h. We define smooth left-invariant vector fields Y1, . . . ,Yn on G via

(Yi)g = deLg(deιXi)

for every g ∈ G, i = 1, . . . ,n. These clearly define a global basis of the left-

invariant distribution D = span{Y1, . . . ,Yn} ⊂ TG on G.

We need to see that D is involutive. Observe that Yi is Lg-related to itself for

every g ∈ G by definition. By exercise 1 also [Yi ,Yj ] is Lg-related to itself such

that

[Yi ,Yj ]g = [Yi ,Yj ]Lg (e) = deLg([Yi ,Yj ]e)

for every g ∈ G. Further Yi is ι-related to Xi by definition. Therefore also

[Yi ,Yj ] is ι-related to [Xi ,Xj ] such that

[Yi ,Yj ]e = [Yi ,Yj ]ι(e) = deι[Xi ,Xj ]e ∈ De.

Hence,

[Yi ,Yj ]g = deLg([Yi ,Yj ]e) ∈ deLg(De) =Dg

by left-invariance. This shows that D is involutive.

Exercise 6.(Functions with values in immersed submanifolds):

LetM ′ ,M,N be smooth manifolds and let ι : N ↪→M be an injective immersion, i.e.

ι is an injective smooth map whose differential is injective. Further, let f : M ′→M

be a smooth map with f (M) ⊆ ι(N ).

Show that ι−1 ◦ f : M ′→N is smooth if it is continuous.

Solution: Let x ∈ M ′, let y = f (x) ∈ M and let z = ι−1(y) ∈ N . Because ι is an

immersion there are open neighborhoods W ⊆N,V ⊆M about z,y resp. and charts

ξ : W →R
k , ψ : V →R

n such that ι(W ) ⊆ V and

j(x1, . . . ,xk)B (ψ ◦ ι ◦ ξ−1)(x1, . . . ,xk) = (x1, . . . ,xk ,0, . . . ,0) ∈Rk × {0} ⊆R
n

for all (x1, . . . ,xk) ∈Rk , i.e. there is a slice chart for N .

Moreover, consider the open set (ι−1 ◦ f )−1(W ) = f −1(ι(W )) ⊆M ′ which contains

an open neighborhoodU of x ∈M ′ with a chartϕ : U →R
m. Because f (U ) ⊆ ι(W ) ⊆

V , we have
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W V U

R
k

R
k × {0} R

m,

ι|W

ξ ψ

f |U

ϕ

j

π

where π : Rn → R
k is the projection on the first k-coordinates. This shows that

ι−1 ◦ f |U is smooth in local charts about x and z = ι−1(f (x)). Because x ∈ M ′ was

arbitrary, this shows that ι−1 ◦ f is smooth.
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