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Exercise 1.(Discrete Subgroups of Rn):

Let D <R
n be a discrete subgroup. Show that there are x1, . . . ,xk ∈D such that

• x1, . . . ,xk are linearly independent over R, and

• D = Zx1 ⊕ · · · ⊕Zxk , i.e. x1, . . . ,xk generate D as a Z-submodule of Rn.

Solution: We will prove this by induction on the dimension n.

Let n = 1 and let D < R be a discrete subgroup. Without loss of generality

we may assume that D , {0}. Since D is discrete there is x1 ∈ D \ {0} such that

|x1| = min{|x| : x ∈ D \ {0}}. We claim that D = Zx1. Suppose there is y ∈ D \Zx1.

Then there is k ∈Z such that

k · x1 < y < (k + 1) · x1.

It follows that y − k ·x1 ∈D and |y − k ·x1| < |x1| which contradicts the minimality of

x1. This shows that D = Zx1 and finishes the proof of the base case n = 1.

Let n ∈ N and assume the statement holds for all discrete subgroups of R
n−1.

Let D < R
n be a discrete subgroup. Without loss of generality we may assume that

D , {0}. There is x1 ∈ D \ {0} such that ‖x1‖ = min{‖x‖ : x ∈ D \ {0}}. Consider the

quotient Rn/Rx1 �R
n−1 and the projection

π : Rn −→R
n/R · x1 �R

n−1

onto it.

We claim that D ′ = π(D) < R
n−1 is a discrete subgroup. We will see this by

showing that V ′ := π(Br(0)) is an open neighborhood of 0 ∈ D ′ such that V ′ ∩D ′ =

{0} where r := inf{‖t · x1 − y‖ : t ∈R, y ∈D \Zx1}.
First of all, we need to see that r is in fact positive. In order to prove this let us

verify that

r = inf{‖t · x1 − y‖ : t ∈R, y ∈D \Zx1} = inf{‖t · x1 − y‖ : t ∈ [0,1], y ∈D \Zx1}.

Clearly, the left-hand-side is less than or equal to the right-hand-side. On the other

hand, if R ≥ 0 such that there are t ∈ R and y ∈ D \Zx1 satisfying R ≥ ‖t · x1 − y‖
then also

R ≥ ‖t · x1 − y‖ = ‖(t − btc)x1 − (y − btcx1)‖;

whence there are s := t − btc ∈ [0,1] and w := (y − btcx1) ∈ D \Zx1 such that R ≥
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‖s ·x1−w‖. Therefore, the right-hand-side is also less than or equal to the left-hand-

side such that they must be equal. Because {t · x1 : t ∈ [0,1]} ⊂ R
n is compact and

D \Zx1 is discrete the infimum on the right-hand-side is in fact a minimum. It is

attained at some t0 · x1 and y0 ∈ D \Zx1. If r = ‖t0 · x1 − y0‖ = 0 then y0 = t0x1 and

t0 ∈ (0,1) because y0 < Zx1. But then ‖y0‖ = t0‖x1‖ < ‖x1‖ which contradicts the

minimality of ‖x1‖; whence r > 0.

Clearly, π : Rn→ R
n−1 is an open map such that V ′ = π(Br(0)) is an open neigh-

borhood of 0 ∈ Rn−1. Now, let x′ ∈ D ′ ∩V ′, i.e. x′ = π(u) = π(y) for some u ∈ Br(0),

y ∈D. Then y −u ∈Rx1, i.e. y −u = t · x1 for some t ∈R. This implies that

‖y − t · x1‖ = ‖u‖ < r = inf{‖y − t · x1‖ : t ∈R, y ∈D \Zx1}.

We deduce that y ∈Zx1 ⊂Rx1; whence x′ = π(y) = 0 and V ′ ∩D ′ = {0}. Therefore, 0

is an isolated point in D ′ such that D ′ is a discrete subgroup of Rn−1 as claimed.

By the induction hypothesis there are x′2, . . . ,x
′
k ∈ D

′ < R
n−1 which are linearly

independent over R and generateD ′ as a Z-submodule, i.e.D ′ = Zx′2⊕· · ·⊕Zx
′
k . We

choose for every x′i a preimage xi ∈ π−1(x′i)∩D. These x1,x2, . . . ,xk ∈ D are linearly

independent over R and satisfy D = Zx1 ⊕ · · · ⊕Zxk . Indeed, let λ1, . . . ,λk ∈ R such

that

λ1x1 +λ2x2 + · · ·+λkxk = 0. (1)

Then

0 = π(λ1x1 +λ2x2 + · · ·+λkxk)

= λ1π(x1)︸   ︷︷   ︸
=0

+λ2π(x2) + · · ·+λkπ(xk)

= λ2x
′
2 + · · ·+λkx′k .

Because x′2, . . . ,x
′
k are linearly independent, λ′2 = . . . = λ′k = 0. By (1), λ1x1 = 0.

Finally, since x1 , 0 also λ1 = 0.

In order to see that x1, . . . ,xk generate D as a Z-module, let y ∈D. Then

π(y) = a2x
′
2 + · · ·+ akx′k = a2π(x2) + · · ·+ akπ(xk)

for some a2, . . . , ak ∈ Z since x′2, . . . ,x
′
k generate D ′ as a Z-module. Considering y′ =

a2x2 + · · ·+ akxk ∈D we obtain

π(y′) = π(a2x2 + · · ·+ akxk) = a2π(x2) + · · ·+ akπ(xk) = π(y)

by linearity such that y − y′ ∈D ∩kerπ =D ∩Rx1.

We claim that D ∩ kerπ = Zx1. It is immediate that Zx1 ⊆ D ∩ kerπ. To see

the other inclusion suppose that there is t · x1 ∈ D for some t ∈ R \Z. Then w =

2
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(t − btc) · x1 ∈D \ {0} and

‖w‖ = (t − btc) · ‖x1‖ < ‖x1‖

in contradiction to the minimality of x1.

Therefore, y − y′ ∈Zx1 and there exists a1 ∈Z such that

y = a1x1 + y′ = a1x1 + a2x2 + · · ·+ akxk .

Hence, D = Zx1 ⊕ · · · ⊕Zxk .

Exercise 2.(Covering maps of Lie Groups):

Let G be a Lie group, letH be a simply connected topological space and let p :H →
G be a covering map.

a) Show that there is a unique Lie group structure on H such that p is a smooth

group homomorphism and that the kernel of p is a discrete subgroup of G.

Solution:

Uniqueness:

We will first show uniqueness. To this end suppose that H is equipped with a

Lie group structure such that p :H → G is a smooth homomorphism. Because

p is a covering map p is in fact a local diffeomorphism. Therefore every chart

(ψ,V ) in a smooth atlas of H has to come from a chart (ϕ,U ) of G in the sense

that ψ = ϕ ◦ p and V = p−1(U ) where V is an open subset of H such that p|V
is a diffeomorphism. This shows that the smooth structure on H is unique.

Hence we are left to prove that the group structure is unique. Let H ′ be

the topological space H equipped with another Lie group structure such that

p = p′ :H ′→ G is a smooth covering homomorphism. Because both H and H ′

are simply connected they are both universal coverings of G. Therefore there

is a diffeomorphism ϕ : H → H ′ sending the neutral element e of H to the

neutral element e′ of H ′ such that the following diagram commutes.

H H ′

G

ϕ
∼

p

p′

We will now show that ϕ : H → H ′ is indeed a homomorphism such that H

and H ′ are isomorphic Lie groups. To this end consider the set

A = {(h,g) ∈H ×H : ϕ(hg−1) = ϕ(h)ϕ(g)−1}.

Clearly, (e,e) ∈ A whence A , ∅. Further A is closed since multiplication,

3
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inversion and ϕ are all continuous maps. If we can prove that A is open then

A =H ×H because H ×H is connected, i.e. ϕ is a homomorphism.

Let (h0, g0) ∈ A. Further, letU ′ ⊆H ′ be an open neighborhood aboutϕ(h0g
−1
0 ) =

ϕ(h0)ϕ(g0)−1 such that p′ |U ′ is a diffeomorphism. Let U ⊆ H ×H be an open

neighborhood about (h0, g0) such that ϕ(hg−1) ∈ U ′ and ϕ(h)ϕ(g)−1 ∈ U ′ for

all (h,g) ∈U ; this is possible because all maps are again continuous. Then

p′(ϕ(hg−1)) = p(hg−1) = p(h)p(g)−1 = p′(ϕ(h))p′(ϕ(g))−1

= p′(ϕ(h)ϕ(g)−1)

for all h,g ∈U where we have used that p and p′ are homomorphisms. By con-

struction ϕ(hg−1),ϕ(h)ϕ(g)−1 ∈U ′ and since p′ |U ′ is bijective we get ϕ(hg−1) =

ϕ(h)ϕ(g)−1 for all h,g ∈ U . Hence, (h0, g0) ∈ U ⊆ A and A is open because

(h0, g0) ∈ A were arbitrary.

It follows that ϕ :H →H ′ is a Lie group isomorphism.

Existence:

First, we may equipH with a smooth structure as described above such that p

becomes a smooth covering map. It is not hard to verify that with p : H → G

also p × p :H ×H → G ×G is a smooth covering map. In particular, since H is

simply connected alsoH×H is simply connected such that p×p :H×H → G×G
is a universal covering. We will now lift the multiplication and inversion

maps to H and show that they define a group structure on H .

Letm : G×G→ G and i : G→ G denote the multiplication and inversion maps

of G, respectively, and let ẽ be an arbitrary element of the fiber p−1(e) ⊆ H .

Since p×p :H×H → G×G is a universal covering the mapm◦(p×p) :H×H → G

has a unique lift m̃ :H ×H →H satisfying m̃(ẽ, ẽ) = ẽ and p ◦ m̃ =m ◦ (p × p):

H ×H H

G ×G G

m̃

p×p p

m

Because p is a local diffeomorphism and p ◦ m̃ = m ◦ (p × p) is smooth also m̃

is smooth. By the same reasoning, i ◦ p : H → G has a smooth lift ĩ : H → G

satisfying ĩ(ẽ) = ẽ and p ◦ ĩ = i ◦ p:

H H

G G

ĩ

p p

i

We define multiplication and inversion in H by xy = m̃(x,y) and x−1 = ĩ(x).

4
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By the above commutative diagrams we obtain

p(xy) = p(x)p(y), p(x−1) = p(x)−1.

It remains to show that H is a group with these operations, for then it is a Lie

group because m̃ and ĩ are smooth and the above relations imply that p is a

homomorphism.

First we show that ẽ is an identity for multiplication in H . Consider the map

f :H →H definbed by f (x) = ẽx. Then

p(f (x)) = p(ẽ)p(x) = ep(x) = p(x),

so f is a lift of p : H → G. The identity map IdH is another lift of p, and

it agrees with f at a point because f (ẽ) = m̃(ẽ, ẽ) = ẽ, so the unique lifting

property of covering maps implies that f = IdH , or equivalently, ẽx = x for all

x ∈H . The same argument shows that xẽ = x.

Next, to show that multiplication in H is associative, consider the two maps

αL,αR :H ×H ×H →H defined by

αL(x,y,z) = (xy)z, αR(x,y,z) = x(yz).

Then

p(αL(x,y,z)) = (p(x)p(y))p(z) = p(x)(p(y)p(z)) = p(αR(x,y,z)),

so αL and αR are both lifts of the same map α(x,y,z) = p(x)p(y)p(z). Because

αL and αR agree at (ẽ, ẽ, ẽ), they are equal. A similar argument shows that

x−1x = xx−1 = ẽ, so G̃ is a group.

Finally, we need to see that kerp is a discrete subgroup. To this end choose

an open neighborhood U ⊆ G of e ∈ G such that p−1(U ) is the disjoint union

of open subsets {Vi}i∈I and p|Vi : Vi → U is a diffeomorphism. In particular,

kerp = p−1(e) ⊆
⊔
i∈I Vi and every x ∈ kerp is contained in only one of the Vi .

Hence, ẽ ∈ Vi0 for some i0 ∈ I and (kerp \ {ẽ})∩Vi0 = ∅ such that ẽ is an isolated

point in kerp. This implies that kerp is a discrete subgroup of H .

b) Show that p is a local isomorphism of Lie groups and that dp is an isomor-

phism of Lie algebras when H is equipped with the Lie group structure from

part a).

Solution: Note that dp is a Lie algebra homomorphism since p is a smooth

homomorphism. Because p is additionally a smooth covering map there are

open neighborhoods U ⊆ G of e and V ⊆ H of ẽ such that p|V : V → U is a

diffeomorphism. In particular, dp : TẽH � h→ TeG � g is bijective such that

dp is a Lie algebra isomorphism. By a lemma from the lecture every local

5
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homomorphism with bijective dp : h→ g is a local isomorphism.

c) Let H , G be arbitrary Lie groups and let G be connected. Further, let ϕ :H →
G be a Lie group homomorphism. Show that ϕ is a covering map if and only

if dϕ : h→ g is an isomorphism.

Solution: First suppose that ϕ is a covering map. The same proof as for part

b) applies here such that dϕ is indeed an isomorphism.

Now, assume that ϕ :H → G is a smooth homomorphism such that dϕ : h→ g

is an isomorphism. This means that dẽϕ : TẽH → TeG is invertible such that

by the inverse function theorem there are open neighborhoodes U ⊆ G about

e ∈ G and V ⊆ H about ẽ ∈ H such that ϕ|V : V → U is a diffeomorphism.

Because G is connected the open neighborhood U about e ∈ G generates G

and it follows easily that ϕ :H → G is surjective.

Now, choose a symmetric open neighborhood W ⊆ V about ẽ ∈ H such that

W 2 ⊆ V . Consider the open subset U ′ := ϕ(W ) ⊆ U . We claim that ϕ−1(U ′) =⊔
h∈kerϕWh and ϕ|Wh : Wh → U ′ is a diffeomorphism for all h ∈ kerϕ. Be-

cause h ∈ kerϕ we have that ϕ ◦Rh = ϕ. Further ϕ : W → U ′ is a diffeomor-

phism such that also ϕ :Wh→U ′ is a diffeomorphism. Also,

x ∈ ϕ−1(U ′) = ϕ−1(ϕ(W )) ⇐⇒ ϕ(x) ∈ ϕ(W )

⇐⇒ ∃w ∈W : ϕ(x) = ϕ(w) ⇐⇒ ∃w ∈W : ϕ(w−1x) = e

⇐⇒ ∃w ∈W : w−1x ∈ kerϕ ⇐⇒ x ∈
⋃

h∈kerϕ

Wh,

such that ϕ−1(U ′) =
⋃
h∈kerϕWh. Finally, ifWh∩Wh′ , ∅ for some h,h′ ∈ kerϕ

then there are w,w′ ∈ W such that wh = w′h′, i.e. h−1h′ ∈ W 2 ⊆ V . Because

ϕ|V : V → U is injective and also ϕ(h−1h′) = ϕ(h−1)ϕ(h′) = e it follows that

h−1h′ = ẽ, or equivalently h = h′. Thus,
⋃
h∈kerϕWh is a disjoint union as

claimed.

Using this together with the fact that ϕ is a homomorphism proves that ϕ is

a covering map.

Remark: Part a) and b) also work if H is not simply connected.

Exercise 3.(Abstract Subgroups as Lie Subgroups):

Let H be an abstract subgroup of a Lie group G and let h be a subspace of the Lie

algebra g of G. Further let U ⊆ g be an open neighborhood of 0 ∈ g and let V ⊆ G
be an open neighborhood of e ∈ G such that the exponential map exp : U → V is a

diffeomorphism satisfying exp(U ∩h) = V ∩H . Show that the following statements

hold:

6
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a) H is a Lie subgroup of G with the induced relative topology;

b) h is a Lie subalgebra of g;

c) h is the Lie algebra of H .

Solution: We will first show thatH is an embedded submanifold of G. For that it is

enough to check that there are slice charts about every point h ∈H . For h = e choose

any linear isomorphism E : g→R
m that sends h to R

k where dimG = dimg =m and

dimh = k. The composite map

ϕ = E ◦ exp−1 : expU = V −→R
m

is then a smooth chart for G, and

ϕ((exp(U )∩H) = E(U ∩ h)

is the slice obtained by setting the last m−k coordinates equal to zero. Moreover, if

h ∈H is arbitrary, the left translation map Lh is a diffeomorphism from exp(U ) to a

neighborhood of h. Since H is a subgroup, Lh(H) =H , and so

Lh((expU )∩H) = Lh(expU )∩H,

and ϕ ◦L−1
h is easily seen to be a slice chart for H in a neighborhood of h. Thus H is

an embedded submanifold of G.

We will now make use of the following Lemma:

Lemma: Let G be a Lie group, and suppose H ⊆ G is a subgroup that is also an

embedded submanifold. Then H is a Lie subgroup.

Proof: We need only check that multiplication m : H ×H → H and inversion

i : H → H are smooth maps. Because multiplication is a smooth map from G ×G
to G its restriction is clearly smooth from H ×H to G. Because H is a subgroup,

multiplication takes H ×H to H . Using local slice charts for H in G it follows easily

that m :H ×H →H is smooth. The same argument works for inversion.

This proves a). We will prove b) and c) in one go:

Denote by ι : H → G the embedding from H into G and let b ⊆ g be a comple-

mentary subspace of h such that g = h⊕ b. This yields the following commutative

diagram:

Lie(H) g = h⊕ b

H G

deι

exp exp

ι

By construction of the slice charts ofH it is immediate that deι is an isomorphism

of vector spaces from Lie(H) to h. Furthermore, ι is a Lie group homomorphism

7
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whence its differential deι induces a Lie algebra homomorphism. Therefore deι is a

Lie algebra isomorphism from Lie(H) to h. Under the identification H � ι(H) ≤ G
we get Lie(H) � h. This proves b) and c).

Exercise 4.(Lie Group homomorphisms and their differentials):

Let G be a connected Lie group, let H be a Lie group and let ϕ,ψ : G→ H be Lie

group homomorphisms.

Show that ϕ = ψ if and only if dϕ = dψ.

Solution: If ϕ = ψ then clearly dϕ = dψ. Thus it suffices to prove the converse

direction.

Assume that dϕ = dψ. We consider the set

AB {g ∈ G |ϕ(g) = ψ(g)},

and we need to show that A = G. Note that A is closed and contains the identity

element e ∈ A. Because G is connected we are left to show that A is open.

Let g0 ∈ A. Recall that there is an open neighborhood 0 ∈ V ⊆ TeG � g and an

open neighborhood e ∈ U ⊆ G such that exp: U → V is a diffeomorphism. Let

g = g0v ∈ g0V with v = exp(X) for some X ∈U . Then

ϕ(g) = ϕ(g0)ϕ(exp(X))

= ϕ(g0)exp(dϕ(X))

= ψ(g0)exp(dψ(X))

= ψ(g0)ψ(exp(X)) = ψ(g),

whence g0V ⊆ A.

Because g0 was arbitrary, A is open.

Exercise 5.(Surjectivity of the Matrix Exponential):

Let Exp : gl(n,R) � R
n×n → GL(n,R) be the matrix exponential map given by the

power series

Exp(X) :=
∞∑
n=0

Xn

n!
.

Consider the Lie subgroup of upper triangular matrices N (n) < GL(n,R) with its

Lie algebra n(n) < gl(n,R) of strictly upper triangular matrices; cf. exercise sheet 4

problem 3.

Show that Exp |n(n) : n(n)→N (n) is surjective.

Hint: Consider the partially defined matrix logarithm Log : Rn×n→ R
n×n given

8
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by

Log(I +A) =
∞∑
n=1

(−1)n−1A
n

n
.

Try to give answers to the following questions and then conclude:

What is its radius of convergence r about I? Why is it a right-inverse of Exp on

the ball Br(I) of radius r about I? Why is there no problem for matrices that are in

N (n) but not in Br(I)?

In order to answer the last question prove that An = 0 for all A ∈ n(n).

Solution: Note that

r = lim
n→∞

∣∣∣∣∣∣ (−1)n−1

n
· n+ 1

(−1)n

∣∣∣∣∣∣ = 1

such that the power series Log(I +A) converges absolutely for every A ∈ Rn×n with

‖A‖ < 1 as in the complex case.

For all complex numbers z ∈C with |z| < 1 we have

elog(1+z) = 1 + z. (2)

Recall that

ez =
∞∑
n=0

zn

n!
∀z ∈C

and

log(1 + z) =
∞∑
n=1

(−1)n−1 z
n

n
∀z ∈ B1(0) ⊂C.

Writing the composition elog(1+z) as a power series we obtain

elog(1+z) =
∞∑
k=0

1
k!

 ∞∑
n=1

(−1)n−1 z
n

n

k =
∞∑
k=0

dkz
k

for all z ∈ B1(0) ⊂C for some dk ∈R, where one uses succesively the Cauchy product

rule for power series to compute the power series representation of
(∑∞

n=1(−1)n−1 zn
n

)k
and then uses the fact that the series converges absolutely for |z| < 1 to reorder it

and to obtain the coefficients for each zk .

Comparing coefficients in (2) then yields that d0 = d1 = 1 and dk = 0 for all k > 1.

Let us now write Exp(Log(I +A)) as well as a power series

Exp(Log(I +A)) =
∞∑
k=0

1
k!

 ∞∑
n=1

(−1)n−1A
n

n

k =
∞∑
k=0

dkA
k

for all z ∈ B1(0) ⊂C, where one uses succesively the Cauchy product rule for power

series to compute the power series representation of
(∑∞

n=1(−1)n−1 zn
n

)k
and then

uses the fact that the series converges absolutely for |z| < 1 to reorder it and to

obtain the coefficients for each zk as above.

9
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Observe that the coefficients dk ∈ R are the same as in the complex case! This

is due to the fact that they arise from the same computation with power series

(Cauchy product rule and reordering accordingly). Hence, d0 = d1 = 1 and dk = 0

for all k > 1 such that

Exp(Log(I +A)) = I +A

for every A ∈Rn×n with ‖A‖ < 1. 1

Finally, observe that every X ∈ N (n) can be written as X = I +A where A ∈ n(n).

Furthermore, since A is strictly upper triangular it maps

A|Vi : Vi → Vi−1

where Vi = span{e1, . . . , ei}, V0 = {0} for every i = 1, . . . ,n. In particular,

An : Rn = Vn→ Vn−1→ ·· · → V0 = {0}

such that An = 0.

That means that for every A ∈ n(n) the power series Log(I + A) is actually a

polynomial in A taking values in n(n):

Log(I +A) =
n−1∑
k=1

(−1)k−1A
k

k
∈ n(n).

Because Log(I +A) is again in n(n) also Exp(Log(I +A)) becomes a polynomial p in

A:

Exp(Log(I +A)) =
∞∑
k=0

1
k!

n−1∑
l=1

(−1)l−1A
l

l


k

︸              ︷︷              ︸
=0, if k≥n

=
n−1∑
k=0

1
k!

n−1∑
l=1

(−1)l−1A
l

l


k

=: p(A)

Now observe that ‖tA‖ < 1 for all t ∈ IA := (−‖A‖−1,‖A‖−1) ⊂R. Hence,

p(tA) = Exp(Log(I + tA)) = I + tA

for all t ∈ IA. The left-hand-side and the right-hand-side are both polynomials in t

which coincide on an open subset of R. Thus they have to coincide everywhere; in

particular

Exp(Log(I +A)) = I +A

1The reasoning applied here can be generalized. In fact, there are theorems that relate identi-
ties of complex power series to identities of power series in Banach algebras; see e.g. Königsberger:
,,Analysis 2”, ch. 1.6 and Königsberger: ,,Analysis 2”, Exercise 18, p. 44

10
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for t = 1. This shows that Log |N (n) is a well-defined right-inverse of Exp |n(n).

Exercise 6.(Multiplication and expexpexp):

LetG be a Lie group with Lie algebra g. Show that for allX,Y ∈ g and small enough

t ∈R
exp(tX)exp(tY ) = exp(t(X +Y ) +O(t2))

whereO(t2) is a differentiable g-valued function such that O(t2)
t2 is bounded as t→ 0.

Solution: Let X,Y ∈ g. Let U ⊆ g be an open neighborhood about 0 and V ⊆ G
be an open neighborhood about e ∈ G such that exp : U → V is a diffeomorphism.

Choose ε > 0 such that exp(tX)exp(tY ) ∈ V for all t ∈ (−ε,ε).

Because exp(tX)exp(tY ) ∈ V , for all |t| < ε, and exp :U → V is a diffeomorphism,

we find a smooth g-valued function Z : (−ε,ε)→ g such that

exp(tX)exp(tY ) = exp(Z(t))

for all |t| < ε.

By Taylor’s theorem we may write

Z(t) = Z(0) + tZ ′(0) +O(t2)

where O(t2) is a smooth g-valued function such that O(t2)
t2 is bounded as t → 0.

Setting t = 0 yields

exp(0) = e = exp(0 ·X)exp(0 ·Y ) = exp(Z(0))

and because exp :U → V is bijective we have Z(0) = 0.

Let f ∈ C∞(G). Then by the chain rule

d
dt

∣∣∣∣∣
t=0
f (exp(tX)exp(tY )) =

d
dt

∣∣∣∣∣
t=0
f (exp(tX)exp(0 ·Y )) +

d
dt

∣∣∣∣∣
t=0
f (exp(0 ·X)exp(tY ))

=
d
dt

∣∣∣∣∣
t=0
f (exp(tX)) +

d
dt

∣∣∣∣∣
t=0
f (exp(tY ))

= Xf +Y f ,

and

d
dt

∣∣∣∣∣
t=0
f (exp(tX)exp(tY )) =

d
dt

∣∣∣∣∣
t=0
f (exp(Z(t))

= Z ′(0)f

11



Introduction to Lie Groups Solution Exercise Sheet 5

identifying g � T0g. Therefore Z ′(0) = X +Y ∈ g and

exp(tX)exp(tY ) = exp(Z(t)) = exp(tZ ′(0) +O(t2)) = exp(t(X +Y ) +O(t2))

for all |t| < ε.
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