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Exercise 1.(Quotients of Lie groups):

Let G be a Lie group and let K ≤ G be a closed normal subgroup.

Show that G/K can be equipped with a Lie group structure such that the quo-

tient map π : G→ G/K is a surjective Lie group homomorphism with kernel K .

Solution: From the lecture we know that there exists a suitable neighborhood U ⊂
g of the origin such that exp |U : U → exp(U ) is a diffeomorphism. Denote by

k = Lie(K) the Lie algebra associated to K . Choose any complement l such that

g = k⊕ l as vector spaces. Define

V :=U ∩ l.

Since V ∩ k = {0} it is immediate to verify that π ◦ exp |V : V → G/K is a home-

omorphism onto the image. This gives us a local chart around the point K ∈ G/K .

We can get an atlas by suitably translating this chart by the natural action of G

on G/K . This gives us back an atlas such that each change of coordinate charts is

smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G/K by passing to the

quotient, i.e. the following diagrams commute:

G ×G G

G/K ×G/K G/K

m

π×π π

G G

G/K G/K

i

π π

By definition, the quotient map π : G→ G/K is a smooth submersion with respect

to this smooth structure. Thus, it follows from the constant rank theorem that

multiplication and inversion are smooth, and G/K is a Lie group. Moreover, it is

clear from the construction that K is the kernel of π.

For more details see Theorem 21.26 in John M. Lee, “Intorduction to Smooth Man-
ifolds”, Springer (2013)

Exercise 2.(Joint eigenvectors):

Let G be a connected Lie group and let π : G → GL(V ) be a finite-dimensional

complex representation.

A joint eigenvector of {π(g) : g ∈ G} is a vector v ∈ V such that there is a smooth
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homomorphism χ : G → C with π(g)v = χ(g) · v for all g ∈ G. Similarly, a joint
eigenvector of {deπ(X) : X ∈ g} is a vector v ∈ V such that there is a linear functional

λ : g→C with deπ(X)v = λ(X) · v for all X ∈ g.

Show that a vector v ∈ V is a joint eigenvector of {deπ(X) : X ∈ g} if and only if it

is a joint eigenvector of {π(g) : g ∈ G}. Moreover, show that χ(exp(X)) = eλ(X) for all

X ∈ g (with χ : G→C and λ : g→C as above).

Solution: Let Gv := {g ∈ G : π(g)Cv = Cv} be the stabilizer of the line Cv. Then Gv
is a closed subgroup of G and hence a Lie group whose Lie algebra is

Lie(Gv) = {X ∈ g : expG(tX) ∈ Gv for all t ∈R}

= {X ∈ g : π(expG(tX))Cv =Cv for all t ∈R}

= {X ∈ g : expGL(V )(tdeπ(X))Cv =Cv for all t ∈R} .

Now observe that if A ∈ End(V ), then

expGL(V )(tA)Cv⇔Cv⇔ A(Cv) ⊂Cv .

In fact (⇐) is immediate by the exponential series and (⇒) follows from the fact

that A = limt→0
expGL(V )(tA)−Id

t .

Thus

Lie(Gv) = {X ∈ g : deπ(X)(Cv) ⊂Cv} = g

by hypothesis. Since G s connected, this implies that Gv = G. Thus for all g ∈ G
there is a well defined χ(g) ∈C∗ with π(g)v = χ(g)v and since g 7→ π(g)v is smooth,

so is χ. Finally,

χ(expG(X))v = π(expG(X))v = expGL(V )(deπ(X))v = eλ(X)v .

Exercise 3.(Isomorphism theorems for Lie algebras):

Let g be a Lie algebra.

a) Let h E g be an ideal. Show that

[X + h,Y + h] := [X,Y ] + h

defines a Lie algebra structure on g/h.

Solution: All we need to show is that the bracket defined above is well-

defined. All the Lie algebra properties will then be inherited from g. Now
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let X,X ′ ,Y ,Y ′ ∈ g and U,V ∈ h such that X ′ = X +U and Y ′ = Y +V . Then

[X ′ + h,Y ′ + h] = [X +U,Y +V ] + h

= [X,Y ] + [X,V ] + [U,Y ] + [U,V ]︸                       ︷︷                       ︸
∈h

+h

= [X,Y ] + h.

This proves that the Lie bracket is well-defined.

b) Show that if ϕ : g→ h is a Lie algebra homomorphism then

g/kerϕ � imϕ

as Lie algebras.

Solution: Let us first see that kerϕ is an ideal in g whence g/kerϕ has indeed

a Lie algebra structure. Let X ∈ kerϕ and let Y ∈ g. Then

ϕ([X,Y ]) = [ϕ(X),ϕ(Y )] = [0,ϕ(Y )] = 0

whence [X,Y ] ∈ kerϕ. This shows that kerϕ E g is an ideal.

Clearly, imϕ ≤ h is a Lie subalgebra. We claim that ψ : g/kerϕ→ imϕ defined

by

ψ(X + kerϕ) = ϕ(X)

is a well-defined Lie algebra isomorphism. We have

X + kerϕ = Y + kerϕ ⇐⇒ X −Y ∈ kerϕ ⇐⇒ ϕ(X) = ϕ(Y )

⇐⇒ ψ(X) = ψ(Y )

for all X,Y ∈ g. This proves that ψ is well-defined and injective. Surjectivity

is immediate from the definition. Finally, ψ is a Lie algebra homomorphism

since

ψ([X + kerϕ,Y + kerϕ]) = ψ([X,Y ] + kerϕ) = ϕ([X,Y ])

= [ϕ(X),ϕ(Y )]

= [ψ(X + kerϕ),ψ(Y + kerϕ)]

for all X,Y ∈ g.

c) Let h ⊆ I be ideals of g. Show that

I/h E g/h and (g/h)/(I/h) � g/I.

Solution: Observe that because h E g also h E I. Consider the homomorphism
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ϕ : g/h→ g/I given by

ϕ(X + h) = X + I.

This is a well-defined homomorphism since h E I. Let X + h ∈ kerϕ. Then

I = ϕ(X + h) = X + I ⇐⇒ X ∈ I,

i.e. kerϕ = I/h. As we have seen in part a) kernels of Lie algebra homomor-

phisms are ideals whence I/h E g/h and again by part a)

(g/h)/(I/h) � g/I.

d) Let h and I be ideals of g. Show that h+ I and h∩ I are ideals in g, and that

h/(h∩ I) � (h+ I)/I.

Solution: Observe that I E h + I because I E g. Let X ∈ h, Y ∈ I and Z ∈ g.

Then

[Z,X +Y ] = [Z,X] + [Z,Y ] ∈ h+ I.

This proves that h+ I E g is an ideal

Consider the map ϕ : h→ (h+ I)/I given by

ϕ(X) = X + I.

We have

X ∈ kerϕ ⇐⇒ X + I = I ⇐⇒ X ∈ I∩ h,

whence kerϕ = I∩ h. Therefore I∩ h is an ideal in h.

Finally, ϕ is surjective: Let X +Y + I ∈ (h+ I)/I. Then

X +Y + I = X + I ∈ imϕ.

Exercise 4.(Solvable Lie algebras):

a) Show that Lie subalgebras and homomorphic images of solvable Lie algebras

are solvable.

Solution: Let g be a solvable Lie algebra. Recall that g is called solvable if

g D g(1) D · · · D g(n) = 0
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for some n ∈N where g(0) := g and inductively

g(i+1) = [g(i),g(i)] = span
R
{[X,Y ] : X,Y ∈ g(i)}

for every i ∈N.

First, let h ≤ g be a Lie subalgebra. Then h(0) = h ≤ g = g(0) and inductively

h(i+1) = [h(i),h(i)] ⊆ [g(i),g(i)] = g(i+1)

for every i ∈N. Hence, if g(n) = 0 then also h(n) = 0 and h is solvable.

Let ϕ : g→ a be a Lie algebra homomorphism. We need to see that imϕ ≤ a is

solvable. Because ϕ is a Lie algebra homomorphism we have that

(imϕ)(i) = ϕ(g)(i) = ϕ(g(i)) (1)

for every i ∈N. From (1) it follows that (imϕ)(n) = ϕ(g(n)) = 0 because g(n) = 0

for some n ∈N whence imϕ is solvable.

b) Show that if h and I are solvable ideals of a Lie algebra g then h+I is a solvable

ideal.

Hint: Use exercise 3 d)).

Solution: By d) we have that

(h+ I)/I � h/(h∩ I). (2)

Since h is solvable so is h/(h∩ I) as the image of the quotient homomorphism

π : h→ h/(h∩ I). By the isomorphism (2) we know that (h + I)/I is solvable

and

0 = ((h+ I)/I)(n) = p(h+ I)(n) (1)
= p

(
(h+ I)(n)

)
for some n ∈ N, where p : h + I → (h + I)/I is the quotient homomorphism.

Therefore

(h+ I)(n) ⊆ kerp = I.

Because I is solvable there is m ∈N such that I(m) = 0. It follows that

(h+ I)(n+m) =
(
(h+ I)(n)

)(m)
⊆ I(m) = 0

whence h+ I is solvable.

c) Deduce that every Lie algebra contains a unique maximal solvable ideal.

Solution: Let g be a Lie algebra and let

a1 ⊆ . . . ⊆ ak ⊆ . . .

be an increasing sequence of solvable ideals of g. Note that every ak is a linear
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subspace of ak+1 whence the sequence {ak} has at most n = dimg different

elements. Thus every such sequence has a maximal element and by Zorn’s

lemma there is a maximal solvable ideal s E g.

Let s and s′ be two maximal solvable ideals of g. By part b) s + s′ is also a

solvable ideal of g and by the maximality of s and s′ we get

s = s+ s′ = s′ .

This proves uniqueness.

The so obtained unique maximal solvable ideal of g is called its radical.

Exercise 5.(Weight spaces and ideals):

Let g be a Lie algebra, let h E g be an ideal and let π : g→ gl(V ) a finite-dimensional

complex representation. For a given linear functional λ : h→C consider its weight

space

V h
λ B {v ∈ V |π(X)v = λ(X)v ∀X ∈ h}.

Show that every weight space V h
λ is invariant under π(g), i.e. π(Y )V h

λ ⊆ V
h
λ for

every λ ∈ h∗,Y ∈ g.

Solution: Let λ ∈ h∗, let Y ∈ g, let X ∈ h and let v ∈ V h
λ . Then

π(X)π(Y )v = (π(X)π(Y )−π(Y )π(X))v +π(Y )π(X)v

= π([X,Y ])v +λ(X)π(Y )v

= λ([X,Y ])v +λ(X)π(Y )v.

Thus, we are left to prove that λ([X,Y ]) = 0.

Consider the increasing sequence of subspaces

Wm = 〈v,π(Y )v, . . . ,π(Y )mv〉 ≤ V , m ≥ 0.

Because V is finite-dimensional this sequence stabilizes for some N ∈N:

WN−1 �WN =WN+1 = · · ·

We claim that for all m ≥ 0, Wm is invariant under π(h) and furthermore

π(X)π(Y )mv −λ(Y )π(X)mv ∈Wm−1 ∀X ∈ h. (3)

We will prove this by induction on m. It holds for m = 0 because v ∈ V h
λ . So let’s

assume it holds for m− 1. We compute:
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π(X)π(Y )mv −λ(X)π(Y )mv = [π(X),π(Y )]π(Y )m−1v +π(Y )π(X)π(Y )m−1v −λ(X)π(Y )mv

= [π(X),π(Y )]π(Y )m−1v +π(Y )π(X)π(Y )m−1v −π(Y )λ(X)π(Y )m−1v.

By induction hypothesis, we have that

wB π(X)π(Y )m−1v −λ(Y )π(X)m−1v ∈Wm−2,

and π(Y )w ∈ Wm−1 by construction of the Wi ’2. Moreover, h is an ideal, so that

[π(X),π(Y )] ∈ π(h) and, by induction hypothesis,

[π(X),π(Y )]π(Y )m−1v ∈Wm−1.

Thus,

π(X)π(Y )mv −λ(X)π(Y )mv ∈Wm−1.

We know that WN is invariant for both π(Y ) and π(X). In particular, (3) shows

thatπ(X) acts onWN as an upper triangular matrix in the basis {v,π(Y )v, . . . ,π(Y )Nv}:
λ(X) ∗

. . .

0 λ(X)


Therefore,

trWN
([π(X),π(Y )]) = 0 = trWN

(π([X,Y ])) =Nλ([X,Y ]),

which implies that λ([X,Y ]) = 0.

Exercise 6.(Lie’s theorem for Lie algebras):

Let g be a solvable Lie algebra and let ρ : g→ gl(V ) be a finite-dimensional complex

representation.

Show that ρ(g) stabilizes a flag V = V0 ⊇ V1 ⊇ · · · ⊇ Vn = 0, with codimVi = i, i.e.

ρ(X)Vi ⊆ Vi for every X ∈ Vi , i = 1, . . . ,n.

Hint: Use exercise 5.

Solution: By induction, it suffices to show that there is a weight λ ∈ g∗ for ρ such

that V g

λ , {0}.
We will prove this by induction on dimg. The case dimg = 0 is trivial. So let’s

assume that it holds for dimg =m− 1.

Since g is solvable (of positive dimension) it properly includes [g,g]. Since g/[g,g]

is abelian, any subspace is automatically an ideal. Take a subspace of codimension
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one in g/[g,g]. Then its inverse image h E g is an ideal of codimension on in g. Thus,

we can decompose

g = h+CY

for some Y ∈ g.

Notice that h is a solvable ideal of dimension m − 1, whence there is a weight

λ ∈ h∗ such that V h
λ , {0}. By exercise 5 V h

λ is invariant under the action of ρ(g).

In particular, ρ(Y )V h
λ ⊆ V

h
λ and there is v ∈ V h

λ \ {0} such that ρ(Y )v = βv for some

β ∈C. We define a linear functional λ′ ∈ g∗ by

λ′(X +αY ) = λ(X) +αβ

for all X ∈ h,α ∈C.

By construction v ∈ V g

λ′ , {0}.
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