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Exercise 1.(Ideals and Quotients of Nilpotent Lie Algebras):

Let g be a Lie algebra and let h E g be an ideal. We have already seen that, g is

solvable if and only if h and g/h are solvable.

Show that such a statement cannot hold for nilpotent g!

Solution: The analogous statement for nilpotent Lie algebras cannot be true, be-

cause if it were we could show that any solvable Lie algebra is nilpotent by induc-

tion on dimg. In fact, let us assume that g is solvable. If g is one-dimensional then

it is certainly nilpotent. If dimg > 1, given any ideal h ⊂ g, both h and g/h are

solvable. Since their dimension is smaller than the dimension of g, they would be

nilpotent by inductive hypothesis and hence g would be nilpotent.

Exercise 2.(Adjoint of nilpotent elements):

Let g ≤ gln(C) be a Lie subalgebra.

Show that, if X ∈ g is nilpotent then ad(X) ∈ gl(g) is nilpotent.

Solution: This will follow from the following formula

ad(X)n(Y ) =
n∑

k=0

(−1)k
(
n
k

)
Xn−kYXk (1)

for every X,Y ∈ g, n ≥ 0.

Indeed, X ∈ g is nilpotent if and only if Xm = 0 for some m ∈ N. Then, by the

above formula (1), ad(X)2m(Y ) = 0 for every Y ∈ g.

We will prove (1) by induction on n. For n = 0 there is nothing to show. So, let

us assume that (1) holds for n and we want to prove it for n + 1. This is a direct

computation:
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ad(X)n+1(Y ) = ad(X) (ad(X)n(Y ))

= X · ad(X)n(Y )− ad(X)n(Y ) ·X

= X ·

 n∑
k=0

(−1)k
(
n
k

)
Xn−kYXk

−
 n∑
k=0

(−1)k
(
n
k

)
Xn−kYXk

 ·X
= Xn+1Y +

n∑
k=1

(−1)k
(
n
k

)
Xn−k+1YXk −

n−1∑
k=0

(−1)k
(
n
k

)
Xn−kYXk+1 + (−1)n+1YXn+1

= Xn+1Y +
n∑

k=1

(−1)k
((
n
k

)
+
(

n
k − 1

))
Xn−k+1YXk + (−1)n+1YXn+1

= Xn+1Y +
n∑

k=1

(−1)k
(
n+ 1
k

)
Xn−k+1YXk + (−1)n+1YXn+1

=
n+1∑
k=0

(−1)k
(
n
k

)
Xn+1−kYXk

Exercise 3.(Cartan’s criterion for solvability):

Let g be a Lie algebra with Killing form Bg.

Show that g is solvable if and only if Bg|g(1)×g(1) = 0.

Hint: One direction is an easy verification. For the other direction you can use a

theorem from class in conjunction with the fact that a Lie algebra g with an ideal

h E g is solvable if and only if both h and g/h are solvable.

Solution: (⇒) Suppose that g is solvable. Then g(1) = [g,g] is nilpotent. Hence,

ad(g(1)) is strictly upper triangular. This implies that Bg|g(1)×g(1) = Bg(1) = 0.

(⇐) From a theorem in class we obtain ad(g))(1) = ad(g(1)), if X,Y ∈ g(1) and 0 =

Bg(X,Y ) = tr(ad(X)ad(Y )), then [ad(g(1)),ad(g(1))] = ad([g(1),g(1)]) = ad(g(2)) is strictly

upper triangular and hence nilpotent, hence solvable. We need to go show that g is

solvable.

Since ad(g(2)) is a solvable ideal in ad(g(1)) and ad(g(1))/ ad(g(2)) = ad(g(1)/g(2))

is Abelian, hence solvable, ad(g(1)) is solvable. Analogously, ad(g(1)) is a solvable

ideal in ad(g) and ad(g)/ ad(g(1)) = ad(g/g(1)) is Abelian, hence solvable, so ad(g) is

solvable. Finally the short exact sequence 0→ Z(g)→ g→ ad(g)→ 0 shows that g

is solvable.

Exercise 4.(Direct sums of simple ideals):

Let g =
⊕

i∈I gi be the direct sum of simple ideals. Then any ideal h E g is of the

2
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form h =
⊕

j∈J gj with J ⊂ I .

Remark: This implies immediately:

(i) Any semisimple Lie algebras has a finite number of ideals.

(ii) Any connected semisimple Lie group with finite center has a finite number

of connected normal subgroups.

Solution: Let J ⊂ I be the smallest subset such that h ⊆
⊕

i∈J gi . We are going to

show that there is equality. Let i ∈ J . Then [h,gi] ⊆ gi , since gi is an ideal; moreover,

since [h,gi] is an ideal, either [h,gi] = gi or [h,gi] = {0}. We will show that [h,gi] , {0}
for every i ∈ J , so that gi = [h,gi] ⊂ h, which implies that h =

⊕
i∈J gi .

To see that [h,gi] , {0}, let us suppose by contradiction that [h,gi] = {0}. Then if

X ∈ h we can write X = X1 + · · · + Xn with |J | = n. In particular from [X,gi] = {0} it

follows that [Xi ,gi] = {0}. Thus h∩gi ⊂ Zgi
(gi) = 0, which contradicts the minimality

of J .

Exercise 5.(Characterization of Semi-Simplicity):

Let g be a Lie algebra. Show that the following statements are equivalent:

(i) g is semisimple;

(ii) g has no non-trivial abelian ideals;

(iii) g has no non-trivial solvable ideals.

Solution: We will first show that b) is equivalent to c). Then we will see that a) is

equivalent to c).

b) ⇐⇒ c):

If g has a non-trivial abelian ideal then this ideal is clearly a non-trivial solvable

ideal. Hence c) implies b) indirectly.

On the other hand, if h is a non-trivial solvable ideal in g with solvability length

n then h(n−1) , 0 is a non-trivial ideal in g that is also abelian because

h(n−1)/h(n) = h(n−1)

is abelian. Therefore, b) implies c) indirectly.

a) ⇐⇒ c):

If g has a non-trivial solvable ideal it has also a non-trivial abelian ideal a as we

have just seen. Because a is abelian adg(X) is of the form

adg(X) =

0 ∗
0 0


3
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for every X ∈ a where the first column and row correspond to a basis of a. Because

a is an ideal adg(Y ) is of the form

adg(Y ) =

∗ ∗0 ∗


for every Y ∈ g. Hence

Bg(X,Y ) = tr(adg(X)adg(Y )) = tr

0 ∗
0 0

∗ ∗0 ∗

 = tr

0 ∗
0 0

 = 0

for every X ∈ a,Y ∈ g, and Bg is degenerate. By Dieudonné g is therefore not

semisimple. This shows that a) implies c) indirectly.

Finally, suppose that g is not semisimple. Therefore h = g⊥ , {0} is a non-trivial

ideal in g by 7a). Let X,Y ∈ h,Z ∈ h(1). Then

Bg([X,Y ],Z) = Bg(X, [Y ,Z]) = 0.

This shows that Bg vanishes when restricted to h(1) × h(1). By Cartan’s criterion this

implies that h is a non-trivial solvable ideal.

Exercise 6.(Semi-Simple Lie Algebras equal their commutator):

Let g be a Lie algebra. Show that if g is semisimple then g = [g,g].

Solution: By Dieudonné the Killing form Bg is non-degenerate. It is therefore suf-

ficient to show that
(
g(1)

)⊥
= {0}. Let Z ∈

(
g(1)

)⊥
. Then

0 = Bg(Z, [X,Y ]) = Bg([Z,X],Y )

for all X,Y ∈ g. Because the Killing form is non-degenerate this implies that [Z,X] =

0 for all X ∈ g, or equivalently the map adg(Z) is zero everywhere. Thus

Bg(Y ,Z) = tr(adg(Y )adg(Z)) = 0

for every Y ∈ g. Because the Killing form is non-degenerate this implies that Z =

0.
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