Examples:

(a) \(\mathbb{R}^n, \pi_n(\mathbb{R}^n) = \{0\} \)

(b) \(S^1, \pi_n(S^1) = \mathbb{Z} \)

\[T^n = S^1 \times \cdots \times S^1 \text{ (n-times)} \]

\[\pi_n(T^n) = \pi_n(S^1) \times \cdots \times \pi_n(S^1) = \mathbb{Z}^n \]

(c) \(\text{SO}(2, \mathbb{R}) = \{ A \in \mathbb{R}^{2 \times 2} \mid A^T A = I_2 \} \)

\[A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \]

\(\Rightarrow \text{SO}(2, \mathbb{R}) \cong S^1 \)

\[\pi_1(\text{SO}(2, \mathbb{R})) = \mathbb{Z} \]

\[\text{SO}(3, \mathbb{R}) \cong \mathbb{R}P^3 \cong S^3 / \mathbb{Z}/2 \mathbb{Z} \Rightarrow \pi_n(\text{SO}(3, \mathbb{R})) = \pi_n(\mathbb{R}P^3) = \mathbb{Z}/2 \mathbb{Z} \]

\[\mathbb{R}P^3 = D^3 / \sim \text{ if } \|x\| = 1 \}

\[D^3 = \{ x \in \mathbb{R}^3 \mid \|x\| \leq 1 \} \]
\(\varphi: D^3 \rightarrow SO(3, \mathbb{R}) \)

\(\varphi(x) = \text{rotation about axis } P_x \) by \(\pi \times \pi \) degrees "to the left" (defined by "the right-hand rule")

\(D^3 \)
\[D^3 \xrightarrow{\varphi} SO(3, \mathbb{R}) \]

\(\mathbb{R}P^3 = D^3 / \sim \)

Claim: \(\varphi \) is surjective & induces a homeomorphism \(\overline{\varphi} \) on the quotient:

Observation: All of them are **abelian**!

Prop: Let \(G \) be a topological group.

Then \(\pi_1(G) \) is **abelian**.

Proof: Let \([\gamma_1], [\gamma_2] \in \pi_1(G, e) \).

Consider \(\varphi: [0, 1] \times [0, 1] \rightarrow G \), \(\varphi(0, s) = \gamma_1(c) \gamma_2(s) \).
We obtain a homotopy \(H = \varphi \circ \psi \) between \(Y_0 \ast Y_1 \) and
\(Y_2 \ast Y_3 \).

\[
\left[[a] \ast [f_2] \right] = \left[[g_3] \ast [g_4] \right] = \left[[g_5] \cdot [g_6] \right] = [a] \cdot [f] \cdot [g] \cdot [h]
\]

\(\therefore \pi_7(G, e) \) is abelian.

The result extends to \(H \)-spaces \(X \) that only
admit a "sort of" multiplication map \(\mu : X \times X \to X \).

Application:

Question: Does a closed surface \(\Sigma = \) admit a topological group structure?

Answer: No!

\[
\pi_3 \left(\begin{array}{cc}
\includegraphics[width=2cm]{closed_surface}
\end{array} \right) = \langle a_1, b_1, a_2, b_2, a_3, b_3 \mid \prod_{i=1}^{3} [a_i, b_i] = 1 \rangle
\]

is NOT abelian!
Universal covering group: (locally path conn, semiloc. simply conn.)

Let \(\tilde{G} \) be a path-connected top. gp. with a universal covering \(\tilde{G} \).

\(\tilde{G} \) only a topological space so far.

Prop: The universal covering \(\tilde{G} \) admits a group structure such that \(\tilde{\pi}: \tilde{G} \rightarrow \tilde{G} \) is a group homomorphism.

Proof: Denote \(m: \tilde{G} \times \tilde{G} \rightarrow \tilde{G} \), \(i: \tilde{G} \rightarrow \tilde{G} \)

\[(g, h) \mapsto g \cdot h, \quad g \mapsto \tilde{g} \cdot \tilde{e}^i. \]

Pick \(\tilde{e} \equiv i(\tilde{e}) \). This will be our identity element.

\[\tilde{G} \times \tilde{G} \xrightarrow{m} \tilde{G} \]

It is a group homomorphism.

\[\tilde{\pi} \times \tilde{\pi} \] is a covering map.

We lift \(m \) to \(\tilde{m} \) s.t. \(\tilde{m}(\tilde{e}, \tilde{e}) = \tilde{e} \).

Lift \(i \) to \(\tilde{i} \) s.t.

\[i(\tilde{e}) = \tilde{e}. \]

One can check that \(\tilde{G} \) is a top. gp. with mult. \(\tilde{m} \) and inversion \(\tilde{i} \).
E.g.: \(\bar{g} \) gives inverses for \(\bar{g} \):

\[
\text{w.t.s.: } \bar{m} (\bar{g}, \bar{i}(\bar{g})) = \bar{e} \quad \forall \bar{g} \in \bar{G}
\]

\[
\bar{m} \circ (\text{id} \times \bar{i}) = \bar{e} \quad \text{(const.)}
\]

\[
\begin{array}{ccc}
\bar{G} \times \bar{G} & \xrightarrow{id \times \bar{i}} & \bar{G} \times \bar{G} & \xrightarrow{\bar{m}} & \bar{G} \\
\downarrow \pi \times \pi & & \downarrow \pi \times \pi & & \downarrow \pi \\
G \times G & \xrightarrow{id \times i} & G \times G & \xrightarrow{m} & G
\end{array}
\]

Note that \(\bar{m} \circ (\text{id} \times \bar{i}) \) is a lift of \(m(\text{id} \times \bar{i}) = e \).

But so is \(\bar{e} \). By uniqueness of lifts:

\[
\bar{m} \circ (\text{id} \times \bar{i}) = \bar{e} \quad \checkmark
\]

Other statements follow similarly (Exercise).

\textbf{Remark:} This group structure is unique:

Let \(\tilde{G}_1, \tilde{G}_2 \) be two simply count. top. gps covering \(G \), s.t. \(\pi_1 : \tilde{G}_1 \rightarrow G, \pi_2 : \tilde{G}_2 \rightarrow G \) are homomorphisms. Then there is a top. isomorphism of \(\tilde{G}_1 \) s.t. \(\tilde{G}_1 \rightarrow \tilde{G}_2 \)
Consider $\Gamma := \ker(\pi)$ for the universal covering group $\pi: \tilde{G} \to G$.

Prop: Γ is discrete and normal. In particular, Γ is central.

Proof:

- **Γ is discrete:** π is a covering map, whence there are open nbhds $V \subseteq \tilde{G}$, $U \subseteq G$ of \tilde{e}, e resp. s.t. $\pi|_V : V \xrightarrow{\sim} U$.

 Then $\Gamma \cap \pi^{-1}(U) \subseteq \{e\} \quad \forall \gamma \in \Gamma$.

 - If $\gamma_1, \gamma_2 \in \pi^{-1}(U)$, then

 $e = \pi(\gamma_1) = \pi(\gamma_1 \cdot \gamma_2 \cdot \gamma_1^{-1}) = \pi(\gamma_1 \cdot \gamma_2) \cdot \gamma_1^{-1} \cdot \pi(\gamma_1) = \pi(\gamma_2) = \pi(\gamma_2)$

 $\pi|_V$ inj.

 $\implies \quad \gamma_2 \cdot \gamma_1^{-1} \in \Gamma$.

- **Γ central:** $\Gamma \triangleleft \tilde{G}$ is discrete.

 $\implies \quad \Gamma$ is central: $\gamma \cdot \tilde{g} = \tilde{g} \cdot \gamma \quad \forall \gamma \in \Gamma, \tilde{g} \in \tilde{G}.$

 Let $\tilde{g} \in \tilde{G}$, $\gamma \in \Gamma$, and let $\tilde{c}: [0,1] \to \tilde{G}$ be a cont. path from $\tilde{e} = \tilde{c}(0)$ to $\tilde{g} = \tilde{c}(1)$.

 Then $\tilde{c}(t) \cdot \gamma \cdot \tilde{c}(t)^{-1} \in \Gamma \quad \forall t \in [0,1]$.

 $t \mapsto \tilde{c}(t) \cdot \gamma \cdot \tilde{c}(t)^{-1}$ is cont. with discrete image

 \implies it's constant.
\[
\tilde{g} \cdot \gamma \cdot \tilde{g}^{-1} = \tilde{c}(g) \cdot \gamma \cdot \tilde{c}(g)^{-1} = \tilde{c}(g) \cdot \gamma \cdot \tilde{c}(g)^{-1} = \tilde{c} \cdot \gamma \cdot \tilde{c}^{-1} = \gamma
\]

Puki: In fact, \(\Gamma \) can be identified with the group of deck transformations and is hence isomorphic to \(\pi_1(S) \):
\[
\Gamma \cong \text{Deck}(S) \cong \pi_1(S).
\]