OD December 2020

9

Goal: Prove Lic's thue
• Are some crusely.
• (nilpotent)
lie' a thue (1) G connected solvable
lie qp, T: G → GU(R,C) complex
repr. =7 I ban's of Cⁿ st.
T(G)
$$\leq \left[\binom{k}{0}\binom{k}{k}\right] \leq GL(R,C)$$

(2) M solvable lie algebra.
P: J → JP(R,C) complex repr =)
=7 I basis of Cⁿ st.
p(J) $\leq \left[\binom{k}{0}\binom{k}{k}\right] \leq ope(R,C)$.
Preliminanon
(L1) • Let N ∈ Cⁿ 203 be st.
T(G)N = $\chi(g)N + g \in G$.
There N'ss a common eigenvector
of T.
T invertible home =7
=7 χ invertible home
(L2) H $\leq G$ formal stop \Rightarrow G(RH
by conjugation \Rightarrow G \cap Hom (H, C^{*})
lie (G'(X)(U): = $\chi(G)CO = CO3$: His
is a closed slopp of G and one
Care see that Lie (Go) = J - H
(L2) H $\leq G$ formal stop \Rightarrow G \cap Hom (H, C^{*})
lie (G'(X)(U): = $\chi(G)CO) =$
 $= \chi(G)L_{O}$
Dre can give Hom (H, C^{*}) a toloogy
w.r.t. the G-ation Ts continuous.
If the G-other T, $\chi \in$ Hom (H, C^{*})
 $is (L2)$ lenter \in solvable \Rightarrow
I closed connected codm. I normal
subgroup -
 M G solvable \Rightarrow I G \leq dosed
st. \in/G Aletian \Rightarrow $G_{N} \mathbb{R}^{*} \mathbb{R}^{*} \mathbb{R}^{*}$
Let H \leq G, \sim codm. one
closed normal subgp. \leq

XE Hom
$$(G, G^*)$$
.
Let $\mathcal{O} \in \mathbb{C} \setminus \{0\}$ be st.
 $p(X) \mathcal{N} = \lambda(X) \mathcal{O} \quad \forall X \in \mathcal{I} = \gamma$
 $\Rightarrow \mathcal{O} \text{ is a common eigenvector}$
 $\mathcal{O} f$
 p lie alp. $\mathcal{O} p = \forall X: \mathcal{I} \to \mathbb{C}$
is a linear map.
 $\Sigma: \mathcal{O} p = det$ is there a rel.
Detween c.e. $\mathcal{O}_T \cap \mathcal{O} c.e. \mathcal{O} f'$
and what about $\chi \notin \lambda$?
Lemma \mathcal{O} is common eigenv.
 $\mathcal{O}_T \cap \mathcal{O} f \mathcal{O}$ common eigenv.
 $\mathcal{O} det - Horeover$
 $\chi (exp X) = e^{\lambda(X)} \quad \forall X \in \mathcal{O}_{-}$
These \mathcal{O} horeb
 $I \to dovons by off.$
 $\mathcal{O} det -$

16 such +1, del not anot => => G/G, would be of dm. 1 shence G, is a codim. I closed cour normal subgp. let p: G -> G/G, and set th:= p'(th), Then the G, dored & connected. By a d'mension count on the ty spaces of the underlying mfds my His cod. 1. I Pf of lie's the Cfor Lie gpa). Enough to show that I common eigenvector, ve Cn 203. $\pi(G) \leq \left(\frac{x}{\sqrt{x}} \right) \leq GL(0, \mathbb{C})$ and continue by considering the repr. on Carlos. Induction on dmG. dmG=1 Any yolx. matrix has an eigenvector $\Rightarrow J = RX$ has a common e.v. Hx

14

is also a common eigenvector stri.
dim G.Z. By (1.3)
$$\exists$$
 closed conn.
Normal slogp $H \leq G(sb coch.n.1)$.
By inductive hyp. dn $H < dm G$
 π_{1H} has a common eigenvector N ,
 $\pi(h) N = \chi(h) N + hett, \chiettom(H, V)$
 $V_{\chi} := \int N \subset \mathbb{C}^{h} : \pi(h) N = \chi(h) N$ theth
 $\ddagger \{0\}$.
 $V_{\chi} = \sqrt{\chi_{2}} \quad i \quad \chi_{1} = \chi = \chi$
 $(h) N = \chi(h) N$ theth, $\chi = 1$
 $(h) N = \chi(h) N$ theth
 $\ddagger \{0\}$.
 $V_{\chi} = \sqrt{\chi_{2}} \quad i \quad \chi_{1} = \chi$
 $(h) N = \chi(h) N$.
 (h)

Want to see that

$$\pi(h)(\pi(q)v) = (q\chi)(h(\pi(q)v).$$

In fact
 $\pi(h)\pi(q)v = \pi(q)(\pi(q)\pi(h)\pi(q)v) =$
 $= \pi(q) \pi(c_{y}(h))v =$
 $= \pi(q) \chi(c_{y}(h))v =$
 $= \chi(c_{y}(h))\pi(q)v =$
 $= (q\cdot\chi)(h)\pi(q)v =$
 $= (q\cdot\chi)(h)\pi(q)v =$
 $= (q\cdot\chi)(h)\pi(q)v .$
 $\Rightarrow V_{\chi}$ is G-invariant.
Since H is addim 1 =>
 $\Rightarrow J = RX \oplus h$, $h = Lie(H)$.
Omsider now
 $d_{z}\pi: J \longrightarrow Jfe(V_{\chi})$
(since V_{χ} is J-invariant)
Since χ aching on V_{χ} has
an eigenvalue and
 $dm_{g}v_{z}^{c} = dm_{g}y$ but
 $dm_{g}v_{z}^{c} = dm_{g}y$ but
 $dm_{g}v_{z}^{c} = dm_{g}y$ but
 $dm_{g}v_{z}^{c} = dm_{g}y$ but
 $dm_{g}v_{z}^{c} = J + iy also solvable$
 $\Rightarrow ad(y_{z}^{c}) solvable <=>$
 $\Rightarrow ad(y_{z}^{c}) following to a vector
 $is a supportion g = solvable$
 $realized as upper triang.
(Lie's thue)
(Lie's thue)
 $(f = u = (y_{z}) + i od(y_{z}))$
But $0 \rightarrow Z(y_{z}) <= g \rightarrow aod(y_{z})^{-0}$$$

$$\begin{aligned} f(\mathbf{r}_{c}) & \leq upper + trangular \\ f(\mathbf{r}_{c}) & \leq \left\lfloor \begin{pmatrix} \mathbf{r}_{c} \times \mathbf{x} \\ \mathbf{r}_{c} & \mathbf{r}_{c} \end{pmatrix} \right\} \leq g(\mathbf{r}_{c}, c) \\ & \left[f(\mathbf{r}_{c}), p(\mathbf{r}_{c}) \right] \leq \left\lfloor \begin{pmatrix} (\mathbf{r}_{c} \times \mathbf{x} \\ \mathbf{r}_{c} & \mathbf{r}_{c} \end{pmatrix} \right\} \leq g(\mathbf{r}_{c}, c) \\ & \left[f(\mathbf{r}_{c}), p(\mathbf{r}_{c}) \right] \leq \left\lfloor \begin{pmatrix} (\mathbf{r}_{c} \times \mathbf{x} \\ \mathbf{r}_{c} & \mathbf{r}_{c} \end{pmatrix} \right] \leq g(\mathbf{r}_{c}, c) \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] - But \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] = \mathbf{r}_{c} f(\mathbf{r}_{c}) \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] - But \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] = \mathbf{r}_{c} f(\mathbf{r}_{c}) \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] = \mathbf{r}_{c} f(\mathbf{r}_{c}) \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] - But \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] = \mathbf{r}_{c} f(\mathbf{r}_{c}) \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c} \right] \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c} \right] \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c} \right] \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c} \right] \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c} \right] \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c}) \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c} \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c} \right] \right] \\ & \left[f(\mathbf{r}_{c}, \mathbf{r}_{c$$

_

J

In patricular
$$\mathcal{H}_{1}$$
 $(\mathcal{I}^{(n)}(\mathbf{x})) = \{\mathbf{x}\}$
 $\Rightarrow (\mathcal{L}^{(n)}(\mathbf{x}) \geq \mathbf{y}\}$.
Shade \Rightarrow the last non-zero
ideal $\mathcal{I}^{(n)}_{(n)}$ in the derived zeries
is Added $\mathcal{L}^{(n)}_{(n)}$ in the central
cence is central.
So highered the algebrase must
have a non-hindle center.
 $\Rightarrow \mathcal{H}^{(n)}_{(n)} \geq \mathcal{L}^{(n)}_{(n)} \geq \mathcal{L}^{(n)}_{(n)}$ soft
idepotent and in fact
 $\Rightarrow (\mathcal{I}) = 103$.
17 18