Problem 1.

(a) $\Omega \in \tau_{w} \Leftrightarrow \Omega$ is an arbitrary union of finite intersections of sets of the form

$$
\Omega_{f, U}=f^{-1}(U), \quad f \in X^{*}, \quad U \subset \mathbb{R} \text { open. }
$$

(b) Since $f \in X^{*}$ is continuous with respect to τ, we have $\Omega_{f, U} \in \tau$ for all $f \in X^{*}$ and $U \subset \mathbb{R}$ open. This implies $\tau_{w} \subset \tau$.
(c) Separation Theorem. Let $M \subset X$ be a closed subspace. Given $x_{0} \in X \backslash M$, with

$$
d=\inf _{x \in M}\left\|x_{0}-x\right\|_{X}>0,
$$

there exists $f \in X^{*}$ with $\left.f\right|_{M}=0,\|f\|_{X^{*}}=1$ and $f\left(x_{0}\right)=d$.
Let $M \subset X$ be a linear subspace.
First Solution. By part (b), if M is closed in the weak topology, it is closed in the norm topology.

Conversely, let us assume that M is closed in the norm topology: we will now prove that $X \backslash M$ is open in the weak topology. Indeed, let $x_{0} \in X \backslash M$: by the separation Theorem above, there is a linear form $f \in X^{*}$ separating $\left\{x_{0}\right\}$ from M. The preimage $f^{-1}\left(\left(\frac{d}{2}, \infty\right)\right)$ is an open neighbourhood of x_{0} in the weak topology that is disjoint from M.

Second Solution. Let $M \subset X$. Part (b) implies $M \subset \bar{M} \subset \bar{M}_{w}$. Thus, $M=\bar{M}_{w} \Rightarrow$ $M=\bar{M}$.

Let $M \subset X$ be a closed subspace. By contradiction, suppose there exists $x_{0} \in \bar{M}_{w} \backslash M$. Let $f \in X^{*}$ be as given by the Separation Theorem. Then, $f^{-1}(\{0\})$ is closed in the weak topology and contains M but not x_{0}. This contradicts $x_{0} \in \bar{M}_{w}$.

Problem 2.

$$
\begin{aligned}
T: \ell^{2} & \rightarrow \ell^{2} \\
\left(x_{0}, x_{1}, x_{2}, \ldots\right) & \mapsto\left(x_{2}, x_{3}, x_{4}, \ldots\right)
\end{aligned}
$$

(a) For every $x \in \ell^{2}$, there holds

$$
\|T x\|_{\ell^{2}} \leq\|x\|_{\ell^{2}} \quad \Rightarrow\|T\| \leq 1
$$

For $e_{3}=(0,0,1,0, \ldots) \in \ell^{2}$, there holds $\left\|e_{3}\right\|_{\ell^{2}}=1=\left\|T e_{3}\right\|_{\ell^{2}}$. Therefore, $\|T\|=1$.
(b) Since for any $x, y \in \ell^{2}$

$$
\langle T x, y\rangle_{\ell^{2}}=\sum_{n=0}^{\infty} x_{n+2} y_{n}=\sum_{n=2}^{\infty} x_{n} y_{n-2}
$$

we conclude

$$
\begin{aligned}
T^{*}: \ell^{2} & \rightarrow \ell^{2} \\
\left(y_{0}, y_{1}, \ldots\right) & \mapsto\left(0,0, y_{0}, y_{1}, \ldots\right) .
\end{aligned}
$$

(c) Suppose, $\lambda \in \mathbb{R}$ is an eigenvalue of T with eigenvector $x \in \ell^{2}$. Let x_{m} be the first non-zero entry of x. Then, $T x=\lambda x$ implies $x_{m+2}=\lambda x_{m}$.
Inductively, we obtain $x_{m+2 k}=\lambda^{k} x_{m}$ for every $k \in \mathbb{N}$.

$$
\Rightarrow\|x\|_{\ell^{2}}^{2} \geq \sum_{k \in \mathbb{N}}\left|x_{m+2 k}\right|^{2}=\left|x_{m}\right|^{2} \sum_{k \in \mathbb{N}}|\lambda|^{2 k} \quad \Rightarrow|\lambda|<1 .
$$

Let $\lambda \in \mathbb{R}$ with $|\lambda|<1$. Consider $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ given by

$$
x_{n}= \begin{cases}\lambda^{\frac{n}{2}} & \text { for even } n \\ 0 & \text { for odd } n\end{cases}
$$

Then, $x \in \ell^{2}$ because $|\lambda|<1$ implies that

$$
\|x\|_{\ell^{2}}^{2}=\sum_{n \in \mathbb{N} \text { even }}\left|\lambda^{\frac{n}{2}}\right|^{2} \leq \sum_{n \in \mathbb{N}}|\lambda|^{n}<\infty .
$$

Moreover,

$$
T x=T\left(0, \lambda, 0, \lambda^{2}, \ldots\right)=\left(0, \lambda^{2}, 0, \lambda^{3}, \ldots\right)=\lambda\left(0, \lambda, 0, \lambda^{2}, \ldots\right)=\lambda x .
$$

Hence, every $\lambda \in \mathbb{R}$ with $|\lambda|<1$ is an eigenvalue of T.

Problem 3.

We want to show that $\alpha_{0}=2$.
For every $0 \leq \alpha<2$, the map F_{α} is coercive, because

$$
\left|F_{\alpha}(x)\right|=\|x\|_{X}^{2}-|\ell(x)|^{\alpha} \geq\left(\|x\|_{X}^{2-\alpha}-\|\ell\|_{X^{*}}^{\alpha}\right)\|x\|_{X}^{\alpha} \xrightarrow{\|x\|_{X} \rightarrow \infty} \infty
$$

As proven in class, $x \mapsto\|x\|_{X}^{2}$ is weakly sequentially lower semi-continuous. Moreover, by definition of weak convergence $x \mapsto \ell(x)$ is weakly sequentially continuous. Therefore, F_{α} is weakly sequentially lower semi-continuous.

Since X is reflexive, the Direct Method ["Variationsprinzip", Satz 5.4.1] applies and we obtain that

$$
\exists x_{0} \in X \quad F_{\alpha}\left(x_{0}\right)=\inf _{x \in X} F_{\alpha}(x) .
$$

Given $\alpha>2$, consider the example $\left(X,\|\cdot\|_{X}\right)=(\mathbb{R},|\cdot|)$ with $\ell(x)=x$.

$$
F_{\alpha}(x)=x^{2}-|x|^{\alpha}=\left(1-|x|^{\alpha-2}\right)|x|^{2} \xrightarrow{x \rightarrow \infty}-\infty .
$$

Recall that $(\mathbb{R},|\cdot|)$ is reflexive, because any finite dimensional Banach space is reflexive.

Problem 4.

The parallelogram identity reads

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

and it is a necessary and sufficient condition for a Banach space to be Hilbertian.
(a) For any $1 \leq p \leq \infty$, we can consider the characteristic functions $\chi_{[0,1]} \in L^{p}(\mathbb{R})$ and $\chi_{[1,2]} \in L^{p}(\mathbb{R})$. Then,

$$
\begin{gathered}
2\left\|\chi_{[0,1]}\right\|_{L^{p}(\mathbb{R})}^{2}=2\left\|\chi_{[1,2]}\right\|_{L^{p}(\mathbb{R})}^{2}=2 \\
\left\|\chi_{[0,1]}+\chi_{[1,2]}\right\|_{L^{p}(\mathbb{R})}^{2}=\left\|\chi_{[0,1]}-\chi_{[1,2]}\right\|_{L^{p}(\mathbb{R})}^{2}= \begin{cases}1 & \text { if } p=\infty \\
2^{\frac{2}{p}} & \text { else. }\end{cases}
\end{gathered}
$$

Hence, the parallelogram identity is violated for $p=\infty$. For $1 \leq p<\infty$, the parallelogram identity implies $2^{\frac{2}{p}}+2^{\frac{2}{p}}=2+2$, hence $p=2$.

The space $L^{2}(\mathbb{R})$ is indeed Hilbertean by virtue of the scalar product

$$
\langle f, g\rangle_{L^{2}(\mathbb{R})}=\int_{\mathbb{R}} f(x) g(x) d x
$$

(b) For any $1 \leq p \leq \infty$, we can consider the elements $x=(1,0,0, \ldots) \in \ell^{p}$ and $y=(0,1,0, \ldots) \in \ell^{p}$. Then,

$$
\begin{aligned}
2\|x\|_{\ell^{p}}^{2} & =2\|y\|_{\ell^{p}}^{2}=2 \\
\|x+y\|_{\ell^{p}}^{2} & =\|x-y\|_{\ell^{p}}^{2}= \begin{cases}1 & \text { if } p=\infty, \\
2^{\frac{2}{p}} & \text { else. }\end{cases}
\end{aligned}
$$

Hence, the parallelogram identity is violated for $p=\infty$. For $1 \leq p<\infty$, the parallelogram identity implies $2^{\frac{2}{p}}+2^{\frac{2}{p}}=2+2$, hence $p=2$.

The space $\ell^{2}(\mathbb{R})$ is indeed Hilbertean by virtue of the scalar product

$$
\langle x, y\rangle_{\ell^{2}}=\sum_{n \in \mathbb{N}} x_{n} y_{n} .
$$

Problem 5.

(a) Let H be a Hilbert space over \mathbb{C} and let $A: H \rightarrow H$ be linear. According to the closed graph theorem,

$$
A \in L(H ; H) \quad \Leftrightarrow \quad A \text { has closed graph. }
$$

Assume that A is self-adjoint. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in H and $x, y \in H$ such that $\left\|x_{n}-x\right\|_{H} \rightarrow 0$ and $\left\|A x_{n}-y\right\|_{H} \rightarrow 0$ as $n \rightarrow \infty$.
For any $z \in H$ we obtain (by continuity of the scalar product and by symmetry of A)

$$
\langle y, z\rangle=\lim _{n \rightarrow \infty}\left\langle A x_{n}, z\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, A z\right\rangle=\langle x, A z\rangle=\langle A x, z\rangle .
$$

Hence, $\langle y-A x, z\rangle=0$. Choosing $z=y-A x$, we conclude $A x=y$.
(b) The spectrum of $A \in L(H ; H)$ is $\sigma(A)=\mathbb{C} \backslash \rho(A)$, where

$$
\rho(A):=\left\{\lambda \in \mathbb{C} \mid(\lambda-A): H \rightarrow H \text { bijective, } \exists(\lambda-A)^{-1} \in L(H, H)\right\} .
$$

(c) Let $A: H \rightarrow H$ be compact, injective and self-adjoint. By the spectral theorem, A has eigenvalues $\lambda_{k} \in \mathbb{R} \backslash\{0\}$ with $\lambda_{k} \rightarrow 0$ as $k \rightarrow \infty$.
Let φ_{k} with $\left\|\varphi_{k}\right\|=1$ be the corresponding eigenvectors. The inverse $A^{-1}: A(H) \rightarrow H$ cannot be continuous because

$$
A^{-1} \varphi_{k}=\frac{1}{\lambda_{k}} \varphi_{k} \quad \Rightarrow\left\|A^{-1} \varphi_{k}\right\|_{H} \geq \frac{1}{\lambda_{k}} \xrightarrow{k \rightarrow \infty} \infty .
$$

Therefore, $0 \in \sigma(A)$.
Alternative. If $\left(x_{n}\right)_{n \in \mathbb{N}} \subset B_{1}$ is any sequence, then $\left(A x_{n}\right)_{n \in \mathbb{N}}$ has a convergent subsequence by compactness of A. If A^{-1} is continuous then $\left(x_{n}\right)_{n \in \mathbb{N}}=\left(A^{-1} A x_{n}\right)_{n \in \mathbb{N}}$ has a convergent subsequence which would imply that $B_{1} \subset H$ is compact.

Since $\left\{\varphi_{k} \mid k \in \mathbb{N}\right\}$ is a Hilbertean basis, its span (finite linear combinations) is dense and contained in the image of A. Hence, $0 \in \sigma_{c}(A)$.

Problem 6.

(a) Let (M, d) be a complete metric space. Then possible statements of Baire are

- Countable intersections of dense open sets are dense.
- If $\left(\cup_{j=1}^{\infty} A_{j}\right)^{\circ} \neq \emptyset$ with $A_{j} \subset M$ closed then there is $j_{0} \in \mathbb{N}$ with $\left(A_{j_{0}}\right)^{\circ} \neq \emptyset$.

The statement of Baire fails in the (incomplete) metric space $(\mathbb{Q},|\cdot|)$: For any $q \in \mathbb{Q}$, the set $\{q\}$ is closed with empty interior but $\mathbb{Q}=\bigcup_{q \in \mathbb{Q}}\{q\}$ is a countable union.
(b) By definition (lim sup of sets), we have

$$
\Omega_{k}:=\{x \in(0, \infty) \mid k x \in \Omega\}, \quad \Sigma=\bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} \Omega_{k}
$$

Let,

$$
A_{N}:=\bigcup_{k=N}^{\infty} \Omega_{k}=\{x \in(0, \infty) \mid \exists k \geq N: k x \in \Omega\}
$$

As union of open sets, A_{N} is open.
By contradiction, we prove that A_{N} is also dense: If A_{N} is not dense in $(0, \infty)$, there exist $a<b$ such that $] a, b\left[\cap A_{N}=\emptyset\right.$, which implies

$$
\forall k \geq N: \quad] k a, k b[\cap \Omega=\emptyset
$$

For k sufficiently large, $k a<(k-1) b$ which contradicts unboundedness of Ω. By Baire, Σ is dense as a countable intersection of the dense open sets A_{N}.

Problem 7.

(a) For the sake of a contradiction, assume the claimed inequality is false: thus for any $k \geq 1$ one can find $x_{k} \in X$ with $\left\|x_{k}\right\|_{X}=1$ and $\left\|P x_{k}\right\|_{Y} \leq \frac{1}{k}$. By compactness of the inclusion $X \subset Z$ one can find $\Lambda \subset \mathbb{N}$ such that

$$
x_{k} \rightarrow x_{\infty}^{Z} \text { in }\left(Z,\|\cdot\|_{Z}\right) \quad(k \rightarrow \infty, k \in \Lambda) .
$$

At this stage, using $(*)$ with $x_{l}-x_{m}$ in lieu of x, namely

$$
\left\|x_{l}-x_{m}\right\|_{X} \leq C\left(\left\|P\left(x_{l}-x_{m}\right)\right\|_{Y}+\left\|x_{l}-x_{m}\right\|_{Z}\right)
$$

one gets that the sequence $\left(x_{k}\right)_{k \in \Lambda}$ is Cauchy in $\left(X,\|\cdot\|_{X}\right)$ so by completeness $x_{k} \rightarrow x_{\infty}^{X}$ in $\left(X,\|\cdot\|_{X}\right) \quad(k \rightarrow \infty, k \in \Lambda)$. Since $X \subset Z$ continuously (as implied by the definition of compact inclusion, Def. 6.2.1.) one also gets $x_{k} \rightarrow x_{\infty}^{X}$ in $\left(Z,\|\cdot\|_{Z}\right) \quad(k \rightarrow \infty, k \in \Lambda)$ and thus, comparing the two, $x_{\infty}^{X}=x_{\infty}^{Z}$ by uniqueness of the limit in $\left(Z,\|\cdot\|_{Z}\right)$. Let us then simply denote by x_{∞} such limit. Since $P \in L(X ; Y)$ we have

$$
x_{k} \rightarrow x_{\infty} \Rightarrow P x_{k} \rightarrow P x_{\infty} \quad(k \rightarrow \infty, k \in \Lambda)
$$

but on the other hand $P x_{k} \rightarrow 0$ by construction, so we conclude $P x_{\infty}=0$ and hence, by injectivity $x_{\infty}=0$. However it should be $\left\|x_{\infty}\right\|_{X}=1$ by the fact that $\left\|x_{k}\right\|_{X}=1$ for any $k \geq 1$, which yields a contradiction.
(b) Let us prove that $M:=\operatorname{ker}(P)$ has finite dimension by showing that $B_{1}(0 ; M)$ is relatively compact in $\left(X,\|\cdot\|_{X}\right)$. To this purpose, pick $\left(x_{k}\right)_{k \in \mathbb{N}}$ a sequence with $\left\|x_{k}\right\|_{X}<1$ and let us prove it has a converging subsequence. Observe that inequality $(*)$, when restricted to $x \in M$ takes the form

$$
\|x\|_{X} \leq C\|x\|_{Z}
$$

Hence (arguing as above) one first gets $x_{k} \rightarrow x_{\infty}^{Z}(k \rightarrow \infty, k \in \Lambda)$ and then, by the inequality above $\left(x_{k}\right)_{k \in \Lambda}$ is Cauchy in $\left(X,\|\cdot\|_{X}\right)$ hence convergent to x_{∞}^{X} (incidentally: $x_{\infty}^{X}=x_{\infty}^{Z}$ by uniqueness of the limit in $\left.Z\right)$.
At this stage, the fact that M is topologically complemented in X follows by Problem 7.2, so let us write $X=M \oplus W$ with $W \subset X$ closed (i. e. $\bar{W}=W$) by Problem 3.4 .

Lastly, the restricted operator $P^{\rho}: W \rightarrow Y$ is linear, bounded and one can invoke the result of part (a). With W in lieu of X and P^{ρ} in lieu of P to conclude that $\|x\|_{X} \leq C^{\prime \prime}\|P x\|_{Z}$ uniformly for $x \in W \subset X$, which completed the proof.

