Problem 1.

(a) The following weak separation theorem holds: Let $(X, \| \cdot \|)$ be a normed space over the real field \mathbb{R} . Let $A, B \subset X$ be non-empty, convex and disjoint and let A be open. Then there exists a functional $l \in X^*$ such that

$$\sup_{a \in A} l(a) \le \inf_{b \in B} l(b).$$

(b) Assume, for the sake of a contradiction, that the first assertion is false: then one could find a sequence (r_k) of positive real numbers, with $r_k \searrow 0$ such that $U_{r_k}(A) \cap B \neq \emptyset$ for all $k \in \mathbb{N}$. Hence we can find, for any k, points $a_k \in A$ and $b_k \in B \cap B_{r_k}(a_k)$. By sequential compactness of A (which, we recall, is equivalent to Heine-Borel compactness in the class of metric spaces) we have that, possibly extracting a subsequence which we shall not rename, $a_k \to a$ for some $a \in A$, as $k \to \infty$. However, by construction we have that $||a_k - b_k|| < r_k$ and thus by the triangle inequality we get $||a - b_k|| \le ||a - a_k|| + ||a_k - b_k||$ which implies $b_k \to a$ as $k \to \infty$. Hence, being B closed, we infer that $a \in B$ and thus $a \in A \cap B$, contrary to the assumption that the two sets are actually disjoint.

For the second assertion, observe that trivially $\sup_{a\in A} l(a) \leq \sup_{a'\in U_r(A)} l(a')$ since $A\subset U_r(A)$ and assume (again by contradiction) that the strict inequality fails, so that equality must hold i. e. $\sup_{a\in A} l(a) = \sup_{a'\in U_r(A)} l(a')$. Now, since A is compact, by the Weierstrass theorem $\sup_{a\in A} l(a)$ must be achieved at some (not necessarily unique!) maximum point $\overline{a}\in A$. It follows by the first derivative test that for any $v\in X$ with ||v||=1 one has that

$$\left[\frac{d}{dt}\right]_{t=0} l(\overline{a} + tv) = 0$$

which means l(v) = 0 for any $v \in X$ with ||v|| = 1 and by linearity actually l(w) = 0 for any $w \in X$. Thus, l would be the null functional i. e. l = 0 in X^* , contrary to the assumption.

(c) The following strong separation theorem holds: Let $(X, \| \cdot \|)$ be a normed space over the real field \mathbb{R} . Let $A, B \subset X$ be non-empty, convex and disjoint and assume that A is compact and B is closed. Then there exists a functional $l \in X^*$ such that

$$\sup_{a \in A} l(a) < \inf_{b \in B} l(b).$$

Let us prove this assertion using, as suggested, the results in part (a) and in part (b). Let r > 0 be such that $U_r(A) \cap B = \emptyset$: for this very choice of r we can apply the weak

separation theorem (part (a)) to the sets $U_r(A)$ and B, thereby obtaining $l \in X^*$ such that

$$\sup_{a' \in U_r(A)} l(a') \le \inf_{b \in B} l(b). \tag{1}$$

But on the other hand, by virtue of what we proved in part (b) we have that

$$\sup_{a \in A} l(a) < \sup_{a' \in U_r(A)} l(a') \tag{2}$$

so that combining (1) with (2) the proof is complete.

Problem 2.

- (a) $A \subset X$ is of first category, if $A = \bigcup_{k \in \mathbb{N}} A_k$ with A_k nowhere dense for every $k \in \mathbb{N}$, i.e. $(\overline{A_k})^{\circ} = \emptyset$.
- **(b)** For any $k \in \mathbb{N}$, let

$$A_k := \left\{ x = (x_n)_{n \in \mathbb{N}} \in \ell^2 \mid \sum_{n \in \mathbb{N}} n^2 |x_n|^2 \le k \right\}.$$

Suppose the elements $x^{(m)} \in A_k$ satisfy $x^{(m)} \to x$ in ℓ^2 as $m \to \infty$. In particular, $|x_n^{(m)} - x_n| \to 0$ as $m \to \infty$ for any $n \in \mathbb{N}$. Then, for any $N \in \mathbb{N}$

$$\sum_{n=0}^{N} n^2 |x_n|^2 = \lim_{m \to \infty} \sum_{n=0}^{N} n^2 |x_n^{(m)}|^2 \le k.$$

Since N is arbitrary, we obtain $x \in A_k$. Hence, $A_k \subset \ell^2$ is closed. Towards a contradiction, suppose, A_k has non-empty interior. Then there exist $a = (a_n)_{n \in \mathbb{N}} \in A_k$ and some $\varepsilon > 0$ such that defining $b_n = a_n + \operatorname{sgn}(a_n) \frac{\varepsilon}{n}$ we have $(b_n)_{n \in \mathbb{N}} \in A_k$. Note that $(\frac{\varepsilon}{n})_{n \in \mathbb{N}} \in \ell^2$ with norm proportional to ε . However,

$$\sum_{n\in\mathbb{N}} n^2 |b_n|^2 \ge \sum_{n\in\mathbb{N}} \left(n^2 a_n^2 + \varepsilon^2 \right) = \infty.$$

Thus, A_k is closed with empty interior, hence nowhere dense and $\mathcal{H} = \bigcup_{k \in \mathbb{N}} A_k$ is of first category.

ETH Zürich

Autumn 2020

Problem 3.

(a) Preliminary comment: one could just present here the proof given in the lecture notes, Beispiel 5.4.1 part ii), but I shall rather present a different argument.

We say $\ell \colon H \to \mathbb{R}$ is affine if there exist $\ell_0 \in X^*$ and $c \in \mathbb{R}$ such that $\ell(x) = \ell_0(x) + c$ for all $x \in X$. Set

$$\mathcal{A}_F := \{\ell \colon H \to \mathbb{R} \text{ affine and } \ell \le F\}, \quad \tilde{F}(x) = \sup_{\ell \in \mathcal{A}_F} \ell(x).$$

I claim that $F(x) = \tilde{F}(x)$ which means that any convex function can be represented as supremum of the affine functions that lies below it. To check such claim, notice that by definition of \mathcal{A}_F one has $F(x) \geq \tilde{F}(x)$ for all $x \in H$ and if it were $F(x_0) > \tilde{F}(x_0)$ one would reach a contradiction by invoking the weak separation theorem to $D_F :=$ $\{(x,y)\in H\times\mathbb{R}:y>F(x)\}\ (\text{convex open set})\ \text{and the point}\ (x_0,\tilde{F}(x_0))\in H\times\mathbb{R},\ \text{as}$ it precisely provides an affine function $\ell \in H^*$ such that $l(x_0) > \tilde{F}(x_0)$, contradiction. Now, pick a sequence $x_k \stackrel{\text{w}}{\rightarrow} x$ and observe that by definition of weak convergence $\overline{\ell}(x_k) \to \overline{\ell}(x)$ for any $\overline{\ell}$ affine. We have that

$$\lim_{k \to \infty} \overline{\ell}(x_k) \le \liminf_{k \to \infty} \sup_{\ell \in \mathcal{A}_F} \ell(x_k)$$

and hence also

$$\sup_{\ell \in \mathcal{A}_F} \lim_{k \to \infty} \ell(x_k) \le \liminf_{k \to \infty} \sup_{\ell \in \mathcal{A}_F} \ell(x_k)$$

so that finally (by the above remark)

$$F(x) = \sup_{\ell \in \mathcal{A}_F} \ell(x) = \sup_{\ell \in \mathcal{A}_F} \lim_{k \to \infty} \ell(x_k) \le \liminf_{k \to \infty} \sup_{\ell \in \mathcal{A}_F} \ell(x_k) = \liminf_{k \to \infty} F(x_k).$$

(b) We want to appeal to the general existence result provided by Satz 5.4.1, which can be stated (as far as we need) as follows: Let X be a reflexive Banach space and let $T: X \to \mathbb{R}$ be coercive and weakly sequentially lower semicontinuous: then there exists $x_0 \in X$ such that

$$T(x_0) = \inf_{x \in X} T(x).$$

Recalling that any Hilbert space is reflexive, it is enough to check that the functional $G\colon H\to\mathbb{R}$ is coercive and weakly sequentially lower semicontinuous. For the first issue, we claim that in fact

$$\lim_{\|x\|\to+\infty}\frac{F(x)}{\|x\|}=+\infty,$$

at which stage one just needs to observe that $G(x) \geq F(x) - C \|x\| = \|x\| \left(\frac{F(x)}{\|x\|} - C\right)$, where we have set $C = \sum_{i=1}^{N} \|\ell_i\|_{H^*}$, so that indeed $\lim_{\|x\| \to \infty} G(x) = +\infty$ as a result of our claim $\lim_{\|x\| \to +\infty} \frac{F(x)}{\|x\|} = +\infty$. To justify the claim, we argue as follows; let $D_F := \{(x,y) \in H \times \mathbb{R} : y > F(x)\}$ i. e. the epigraph of the function F, and let $(x_0,y_0) \in H \times \mathbb{R} \setminus D_F$ i. e. a point below the graph. By the weak separation theorem, which is applicable since $D_F \subset H \times \mathbb{R}$ is open thanks to the assumption that F is continuous, we can find $\ell \in H^*, c \in \mathbb{R}$ such that $F(x) \geq \ell(x) - c$, thus $F(x) \geq -\|\ell\|_{H^*} \|x\| - c$ which implies that $F(x)/\|x\|$ is bounded from below as one lets $\|x\| \to \infty$: this implies that there cannot be any sequence (x_k) such that $\|x_k\| \to \infty$ while $F(x_k)/\|x_k\| \to -\infty$. This is precisely what one needs to gain the implication

$$\lim_{\|x\|\to +\infty}\frac{|F(x)|}{\|x\|}=+\infty \ \Rightarrow \ \lim_{\|x\|\to +\infty}\frac{F(x)}{\|x\|}=+\infty.$$

Lastly, let us prove the lower semicontinuity of G. Using part (a) (for F) we have that if $x_k \stackrel{\text{w}}{\to} x$ then $F(x) \leq \liminf_{k \to \infty} F(x_k)$ and for any given $\ell \in H^*$ trivially (by definition of weak convergence) $\ell(x_k) \to \ell(x)$ and thus also $|\ell(x_k)| \to |\ell(x)|$ as $k \to \infty$. Combining these two facts together gives $G(x) \leq \liminf_{k \to \infty} G(x_k)$.

Problem 4.

(a) For any $f \in L^2(\mathbb{R}; \mathbb{C})$, Tf = fg is measurable and

$$||Tf||_{L^{2}(\mathbb{R};\mathbb{C})}^{2} = \int_{\mathbb{R}} |fg|^{2} dx \le ||g||_{L^{\infty}(\mathbb{R};\mathbb{C})}^{2} \int_{\mathbb{R}} |f|^{2} dx = ||g||_{L^{\infty}(\mathbb{R};\mathbb{C})}^{2} ||f||_{L^{2}(\mathbb{R};\mathbb{C})}^{2}.$$

In particular, $Tf \in L^2(\mathbb{R}; \mathbb{C})$ with $||Tf||_{L^2(\mathbb{R};\mathbb{C})} \leq ||g||_{L^{\infty}(\mathbb{R};\mathbb{C})} ||f||_{L^2(\mathbb{R};\mathbb{C})}$. As T is clearly linear, this shows that T is a continuous linear operator with $||T|| \leq ||g||_{L^{\infty}(\mathbb{R};\mathbb{C})}$.

We claim that $||T|| \ge ||g||_{L^{\infty}(\mathbb{R};\mathbb{C})}$, which will show that $||T|| = ||g||_{L^{\infty}(\mathbb{R};\mathbb{C})}$. If $||g||_{L^{\infty}(\mathbb{R};\mathbb{C})}$ vanishes then this is trivial, otherwise for any $0 < \varepsilon < ||g||_{L^{\infty}(\mathbb{R};\mathbb{C})}$ the set

$$A_{\varepsilon} := \{ x \in \mathbb{R} : |g(x)| > ||g||_{L^{\infty}(\mathbb{R}; \mathbb{C})} - \varepsilon \}$$

has positive measure. Assume that $|A_{\varepsilon}| < \infty$: since $g \neq 0$ on A_{ε} , we can take $f := \frac{\overline{g}}{|q|^2} \chi_{A_{\varepsilon}}$, which belongs to $L^2(\mathbb{R}; \mathbb{C})$ since

$$\int_{\mathbb{R}} |f|^2 dx \le \left(\|g\|_{L^{\infty}(\mathbb{R};\mathbb{C})} - \varepsilon \right)^{-2} |A_{\varepsilon}| < \infty$$

and moreover, being $Tf = \chi_{A_{\varepsilon}}$,

$$||T||^2 \ge \frac{||Tf||_{L^2(\mathbb{R};\mathbb{C})}^2}{||f||_{L^2(\mathbb{R};\mathbb{C})}^2} = \frac{|A_{\varepsilon}|}{||f||_{L^2(\mathbb{R};\mathbb{C})}^2} \ge \left(||g||_{L^{\infty}(\mathbb{R};\mathbb{C})} - \varepsilon\right)^2$$

D-MATH Prof. A. Carlotto

(notice that f does not vanish a.e.). If instead $|A_{\varepsilon}| = \infty$, we choose any radius R > 0 such that $A_{\varepsilon} \cap B_R(0)$ has (finite) positive measure: this is possible because $|A_{\varepsilon}| = \lim_{R \to \infty} |A_{\varepsilon} \cap B_R(0)|$. Then we repeat the same argument with A_{ε} replaced by $A_{\varepsilon} \cap B_R(0)$, reaching again the conclusion $||T|| \ge ||g||_{L^{\infty}(\mathbb{R};\mathbb{C})} - \varepsilon$. Since ε was arbitrary, the claim follows.

(b) If $\lambda \in \mathbb{C}$ does not belong to the essential image, then there exists $\varepsilon > 0$ such that $g^{-1}(B_{\varepsilon}(\lambda))$ has measure zero, which means that $|g(x) - \lambda| \geq \varepsilon$ for a.e. x. Hence, the function $h(x) := (\lambda - g(x))^{-1}$ (defined a.e.) belongs to $L^{\infty}(\mathbb{R}; \mathbb{C})$, with $||h||_{L^{\infty}(\mathbb{R};\mathbb{C})} \leq \varepsilon^{-1}$, and the corresponding multiplication operator $S : L^{2}(\mathbb{R}; \mathbb{C}) \to L^{2}(\mathbb{R}; \mathbb{C})$, Sf := fh satisfies

$$S(\lambda I - T) = I, \quad (\lambda I - T)S = I.$$

So $\lambda I - T$ is invertible, i.e. $\lambda \notin \sigma(T)$.

Assume instead that λ belongs to the essential image and, for any fixed $\varepsilon > 0$, let $C_{\varepsilon} := \{x : |g(x) - \lambda| < \varepsilon\}$, which has positive measure. As in (a), we truncate it with a ball $B_R(0)$ in the domain, in such a way that $0 < |C_{\varepsilon} \cap B_R(0)| < \infty$. Taking f to be the characteristic function of $C_{\varepsilon} \cap B_R(0)$, we get $f \in L^2(\mathbb{R}; \mathbb{C})$ and

$$\frac{\|(\lambda I - T)f\|_{L^2(\mathbb{R};\mathbb{C})}^2}{\|f\|_{L^2(\mathbb{R};\mathbb{C})}^2} = \frac{\int_{C_{\varepsilon} \cap B_R(0)} |g(x) - \lambda|^2 dx}{|C_{\varepsilon} \cap B_R(0)|} \le \varepsilon^2.$$

Now, if $\lambda I - T$ were invertible, we would have

$$||f||_{L^{2}(\mathbb{R};\mathbb{C})} \leq ||(\lambda I - T)^{-1}|| ||(\lambda I - T)f||_{L^{2}(\mathbb{R};\mathbb{C})} \leq \varepsilon ||(\lambda I - T)^{-1}|| ||f||_{L^{2}(\mathbb{R};\mathbb{C})}.$$

Thus, being $||f||_{L^2(\mathbb{R};\mathbb{C})} > 0$, we would get $1 \leq \varepsilon ||(\lambda I - T)^{-1}||$, which gives a contradiction if ε is chosen small enough. So in this case $\lambda \in \sigma(T)$.

Problem 5.

Choose $H = \mathbb{R}^2$. Let $A, B \in L(\mathbb{R}^2; \mathbb{R}^2)$ be given by

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then,

$$||A|| = ||B|| = ||A + B|| = ||A - B|| = 1.$$

Since $2 \neq 4$, the parallelogram identity $||A + B||^2 + ||A - B||^2 = 2||A||^2 + 2||B||^2$ is false in $L(\mathbb{R}^2; \mathbb{R}^2)$. Therefore, $L(\mathbb{R}^2; \mathbb{R}^2)$ is not Hilbertean.

Problem 6.

- (a) $(X, \|\cdot\|_X)$ is separable if X contains a countable, dense subset. The Banach space $(L^{\infty}((0,1)), \|\cdot\|_{L^{\infty}((0,1))})$ is not separable.
- (b) $(Y, \|\cdot\|_Y)$ is reflexive, if $\mathcal{I}: Y \to Y^{**}$ given by $(\mathcal{I}x)(f) = f(x)$ is surjective. The Banach space $(L^1((0,1)), \|\cdot\|_{L^1((0,1))})$ is not reflexive.
- (c) Given $x \in X$, let $y_n = F_n x \in Y$. Then, the sequence $(y_n)_{n \in \mathbb{N}}$ is bounded because $||F_n x||_Y \leq ||F_n|| ||x||_X \leq C ||x||_X$.

Since Y is reflexive, there exists an unbounded set $\Lambda \subset \mathbb{N}$ and some $y \in Y$ such that $y_n \stackrel{\text{w}}{\to} y$ as $\Lambda \ni n \to \infty$ according to the Eberlein–Smulyan Theorem.

Since X is separable, there exists a dense subset $D = \{x_1, x_2, \ldots\} \subset X$. Towards a diagonal argument, let $\mathbb{N} \supset \Lambda_1 \supset \Lambda_2 \supset \ldots$ be the sets as above corresponding to the elements $x_1, x_2, \ldots \in D$. Let Λ_{∞} be a diagonal sequence. Let $x \in X$ and $\ell \in Y^*$ be arbitrary. Then, for $m, n \in \Lambda_{\infty}$ and $k \in \mathbb{N}$, using $||F_n|| \leq C$ we obtain

$$|\ell(F_n x) - \ell(F_m x)| \le |\ell((F_n - F_m)(x - x_k))| + |\ell(F_n(x_k)) - \ell(F_m(x_k))|$$

$$< 2C ||\ell||_{Y^*} ||x - x_k||_X + |\ell(F_n(x_k)) - \ell(F_m(x_k))|.$$

By density of D, the index k can be chosen such that $4C\|\ell\|_{Y^*}\|x-x_k\|_X < \varepsilon$. By the diagonal argument, $(\ell(F_n(x_k)))_{n\in\Lambda_\infty}$ is a Cauchy sequence. Hence, also $(\ell(F_nx))_{n\in\Lambda_\infty}$ is a Cauchy sequence. Since ℓ is arbitrary, $(F_nx)_{n\in\Lambda_\infty}$ converges weakly.

Problem 7.

We note preliminarily that, set $\Pi_j \in L(H, H_j)$ the orthogonal projection onto H_j , we have

$$v_j = \Pi_j(v) = \lim_{N \to \infty} \Pi_j \left(\sum_{\ell=1}^N v_\ell \right) = \lim_{N \to \infty} \sum_{\ell=1}^N \Pi_j(v_\ell) \quad \forall v \in H$$

by continuity of Π_j . Moreover, being $H_k \perp H_\ell$ for $k \neq \ell$,

$$||v||^2 = \lim_{N \to \infty} \left\| \sum_{\ell=1}^N v_\ell \right\|^2 = \lim_{N \to \infty} \sum_{\ell=1}^N ||v_\ell||^2 = \sum_{\ell=1}^\infty ||v_\ell||^2.$$

(\Leftarrow) Assume that A_c is compact. Since $H_j \neq \{0\}$ by hypothesis, for each $j \geq 1$ we can select an element $w_j \in H_j$ with $||w_j|| = c_j$. Let us form the sequence

$$(v^{(k)})_{k=1}^{\infty} \subset H, \quad v^{(k)} := \sum_{\ell=1}^{k} w_j.$$

D-MATH
Prof. A. Carlotto

Note that $v^{(k)} \in A_c$ and that $v_j^{(k)} = w_j \quad \forall k \geq j$. By compactness of A_c , there exists an infinite subset $\Lambda \subset \mathbb{N}$ and a vector $v^{(\infty)} \in A_c$ such that $\lim_{\Lambda \ni k \to \infty} v^{(k)} = v^{(\infty)}$. But, by continuity of Π_j ,

$$v_j^{(\infty)} = \Pi_j(v^{(\infty)}) = \lim_{\Lambda \ni k \to \infty} \Pi_j(v^{(k)}) = \lim_{\Lambda \ni k \to \infty} v_j^{(k)} = w_j$$

and so

$$||v^{(\infty)}||^2 = \sum_{j=1}^{\infty} ||v_j^{(\infty)}||^2 = \sum_{j=1}^{\infty} ||w_j||^2 = \sum_{j=1}^{\infty} c_j^2.$$

Since $||v^{(\infty)}||^2 < \infty$, we deduce that $c \in \ell^2$.

(\Rightarrow) Assume that $c \in \ell^2$. Given a sequence $(v^{(k)})_{k=1}^{\infty}$ in A_c , we want to find a converging subsequence. We will reach this goal by a diagonal argument: since H_1 is finite-dimensional and $||v_1^{(k)}|| \le c_1$ for all k, we can find a subset $\Lambda_1 \subset \mathbb{N}$ and a vector $v_{1,\infty} \in H_1$ such that

$$\lim_{\Lambda_1 \ni k \to \infty} v_1^{(k)} = v_{1,\infty}, \quad \|v_{1,\infty}\| \le c_1.$$

Similarly, we can find $\Lambda_2 \subset \Lambda_1$ and $v_{2,\infty} \in H_2$ such that

$$\lim_{\Lambda_2 \ni k \to \infty} v_2^{(k)} = v_{2,\infty}, \quad \|v_{2,\infty}\| \le c_2,$$

and so on. Denoting Λ the diagonal subsequence (formed by the first element of Λ_1 , the second element of Λ_2 and so on), we get

$$\lim_{\Lambda \ni k \to \infty} v_j^{(k)} = v_{j,\infty}, \quad \|v_{j,\infty}\| \le c_j \quad \forall j \ge 1.$$

We now claim that $v^{(\infty)} := \sum_{j=1}^{\infty} v_{j,\infty}$ is well-defined, i.e. that $\lim_{N\to\infty} \sum_{j=1}^{N} v_{j,\infty}$ exists. Since H is complete, it suffices to show that we have a Cauchy sequence. Being $\sum_{j} c_{j}^{2} < \infty$, by orthogonality we get

$$\left\| \sum_{j=m+1}^{n} v_{j,\infty} \right\|^{2} = \sum_{j=m+1}^{n} \|v_{j,\infty}\|^{2} \le \sum_{j>m} c_{j}^{2}$$

for m < n, which is infinitesimal as $m \to \infty$. Note that, by uniqueness, $v_j^{(\infty)} = v_{j,\infty}$, so $v^{(\infty)} \in A_c$. We now want to show that $v^{(k)} \to v^{(\infty)}$ along the subsequence Λ . Fix any $\varepsilon > 0$ and choose $N_{\varepsilon} \ge 1$ such that $\sum_{j>N_{\varepsilon}} c_j^2 \le \varepsilon$ (here we use $c \in \ell^2$). Then

$$||v^{(k)} - v^{(\infty)}||^2 = \sum_{j=1}^{\infty} ||v_j^{(k)} - v_j^{(\infty)}||^2 \le \sum_{j=1}^{N_{\varepsilon}} ||v_j^{(k)} - v_j^{(\infty)}||^2 + \sum_{j>N_{\varepsilon}} (2c_j)^2,$$

where we used $||v_j^{(k)} - v_{j,\infty}|| \le 2c_j$. Since each term in the finite sum is infinitesimal (as $\Lambda \ni k \to \infty$), for $k \in \Lambda$ large enough we get $||v^{(k)} - v^{(\infty)}||^2 \le 5\varepsilon$. Since ε was arbitrary, this proves the desired convergence.