Problem 1.

(a) The following weak separation theorem holds: Let $(X,\|\cdot\|)$ be a normed space over the real field \mathbb{R}. Let $A, B \subset X$ be non-empty, convex and disjoint and let A be open. Then there exists a functional $l \in X^{*}$ such that

$$
\sup _{a \in A} l(a) \leq \inf _{b \in B} l(b) .
$$

(b) Assume, for the sake of a contradiction, that the first assertion is false: then one could find a sequence $\left(r_{k}\right)$ of positive real numbers, with $r_{k} \searrow 0$ such that $U_{r_{k}}(A) \cap B \neq \emptyset$ for all $k \in \mathbb{N}$. Hence we can find, for any k, points $a_{k} \in A$ and $b_{k} \in B \cap B_{r_{k}}\left(a_{k}\right)$. By sequential compactness of A (which, we recall, is equivalent to Heine-Borel compactness in the class of metric spaces) we have that, possibly extracting a subsequence which we shall not rename, $a_{k} \rightarrow a$ for some $a \in A$, as $k \rightarrow \infty$. However, by construction we have that $\left\|a_{k}-b_{k}\right\|<r_{k}$ and thus by the triangle inequality we get $\left\|a-b_{k}\right\| \leq\left\|a-a_{k}\right\|+\left\|a_{k}-b_{k}\right\|$ which implies $b_{k} \rightarrow a$ as $k \rightarrow \infty$. Hence, being B closed, we infer that $a \in B$ and thus $a \in A \cap B$, contrary to the assumption that the two sets are actually disjoint.

For the second assertion, observe that trivially $\sup _{a \in A} l(a) \leq \sup _{a^{\prime} \in U_{r}(A)} l\left(a^{\prime}\right)$ since $A \subset U_{r}(A)$ and assume (again by contradiction) that the strict inequality fails, so that equality must hold i. e. $\sup _{a \in A} l(a)=\sup _{a^{\prime} \in U_{r}(A)} l\left(a^{\prime}\right)$. Now, since A is compact, by the Weierstrass theorem $\sup _{a \in A} l(a)$ must be achieved at some (not necessarily unique!) maximum point $\bar{a} \in A$. It follows by the first derivative test that for any $v \in X$ with $\|v\|=1$ one has that

$$
\left[\frac{d}{d t}\right]_{t=0} l(\bar{a}+t v)=0
$$

which means $l(v)=0$ for any $v \in X$ with $\|v\|=1$ and by linearity actually $l(w)=0$ for any $w \in X$. Thus, l would be the null functional i. e. $l=0$ in X^{*}, contrary to the assumption.
(c) The following strong separation theorem holds: Let $(X,\|\cdot\|)$ be a normed space over the real field \mathbb{R}. Let $A, B \subset X$ be non-empty, convex and disjoint and assume that A is compact and B is closed. Then there exists a functional $l \in X^{*}$ such that

$$
\sup _{a \in A} l(a)<\inf _{b \in B} l(b) .
$$

Let us prove this assertion using, as suggested, the results in part (a) and in part (b). Let $r>0$ be such that $U_{r}(A) \cap B=\emptyset$: for this very choice of r we can apply the weak
separation theorem (part (a)) to the sets $U_{r}(A)$ and B, thereby obtaining $l \in X^{*}$ such that

$$
\begin{equation*}
\sup _{a^{\prime} \in U_{r}(A)} l\left(a^{\prime}\right) \leq \inf _{b \in B} l(b) . \tag{1}
\end{equation*}
$$

But on the other hand, by virtue of what we proved in part (b) we have that

$$
\begin{equation*}
\sup _{a \in A} l(a)<\sup _{a^{\prime} \in U_{r}(A)} l\left(a^{\prime}\right) \tag{2}
\end{equation*}
$$

so that combining (1) with (2) the proof is complete.

Problem 2.

(a) $A \subset X$ is of first category, if $A=\bigcup_{k \in \mathbb{N}} A_{k}$ with A_{k} nowhere dense for every $k \in \mathbb{N}$, i. e. $\left(\overline{A_{k}}\right)^{\circ}=\emptyset$.
(b) For any $k \in \mathbb{N}$, let

$$
A_{k}:=\left\{x=\left.\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}\left|\sum_{n \in \mathbb{N}} n^{2}\right| x_{n}\right|^{2} \leq k\right\} .
$$

Suppose the elements $x^{(m)} \in A_{k}$ satisfy $x^{(m)} \rightarrow x$ in ℓ^{2} as $m \rightarrow \infty$. In particular, $\left|x_{n}^{(m)}-x_{n}\right| \rightarrow 0$ as $m \rightarrow \infty$ for any $n \in \mathbb{N}$. Then, for any $N \in \mathbb{N}$

$$
\sum_{n=0}^{N} n^{2}\left|x_{n}\right|^{2}=\lim _{m \rightarrow \infty} \sum_{n=0}^{N} n^{2}\left|x_{n}^{(m)}\right|^{2} \leq k
$$

Since N is arbitrary, we obtain $x \in A_{k}$. Hence, $A_{k} \subset \ell^{2}$ is closed. Towards a contradiction, suppose, A_{k} has non-empty interior. Then there exist $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in A_{k}$ and some $\varepsilon>0$ such that defining $b_{n}=a_{n}+\operatorname{sgn}\left(a_{n}\right) \frac{\varepsilon}{n}$ we have $\left(b_{n}\right)_{n \in \mathbb{N}} \in A_{k}$. Note that $\left(\frac{\varepsilon}{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$ with norm proportional to ε. However,

$$
\sum_{n \in \mathbb{N}} n^{2}\left|b_{n}\right|^{2} \geq \sum_{n \in \mathbb{N}}\left(n^{2} a_{n}^{2}+\varepsilon^{2}\right)=\infty
$$

Thus, A_{k} is closed with empty interior, hence nowhere dense and $\mathcal{H}=\bigcup_{k \in \mathbb{N}} A_{k}$ is of first category.

Problem 3.

(a) Preliminary comment: one could just present here the proof given in the lecture notes, Beispiel 5.4.1 part ii), but I shall rather present a different argument.
We say $\ell: H \rightarrow \mathbb{R}$ is affine if there exist $\ell_{0} \in X^{*}$ and $c \in \mathbb{R}$ such that $\ell(x)=\ell_{0}(x)+c$ for all $x \in X$. Set

$$
\mathcal{A}_{F}:=\{\ell: H \rightarrow \mathbb{R} \text { affine and } \ell \leq F\}, \quad \tilde{F}(x)=\sup _{\ell \in \mathcal{A}_{F}} \ell(x) .
$$

I claim that $F(x)=\tilde{F}(x)$ which means that any convex function can be represented as supremum of the affine functions that lies below it. To check such claim, notice that by definition of \mathcal{A}_{F} one has $F(x) \geq \tilde{F}(x)$ for all $x \in H$ and if it were $F\left(x_{0}\right)>\tilde{F}\left(x_{0}\right)$ one would reach a contradiction by invoking the weak separation theorem to $D_{F}:=$ $\{(x, y) \in H \times \mathbb{R}: y>F(x)\}$ (convex open set) and the point $\left(x_{0}, \tilde{F}\left(x_{0}\right)\right) \in H \times \mathbb{R}$, as it precisely provides an affine function $\ell \in H^{*}$ such that $l\left(x_{0}\right)>\tilde{F}\left(x_{0}\right)$, contradiction. Now, pick a sequence $x_{k} \xrightarrow{\mathrm{w}} x$ and observe that by definition of weak convergence $\bar{\ell}\left(x_{k}\right) \rightarrow \bar{\ell}(x)$ for any $\bar{\ell}$ affine. We have that

$$
\lim _{k \rightarrow \infty} \bar{\ell}\left(x_{k}\right) \leq \liminf _{k \rightarrow \infty} \sup _{\ell \in \mathcal{A}_{F}} \ell\left(x_{k}\right)
$$

and hence also

$$
\sup _{\ell \in \mathcal{A}_{F}} \lim _{k \rightarrow \infty} \ell\left(x_{k}\right) \leq \liminf _{k \rightarrow \infty} \sup _{\ell \in \mathcal{A}_{F}} \ell\left(x_{k}\right)
$$

so that finally (by the above remark)

$$
F(x)=\sup _{\ell \in \mathcal{A}_{F}} \ell(x)=\sup _{\ell \in \mathcal{A}_{F}} \lim _{k \rightarrow \infty} \ell\left(x_{k}\right) \leq \liminf _{k \rightarrow \infty} \sup _{\ell \in \mathcal{A}_{F}} \ell\left(x_{k}\right)=\liminf _{k \rightarrow \infty} F\left(x_{k}\right) .
$$

(b) We want to appeal to the general existence result provided by Satz 5.4.1, which can be stated (as far as we need) as follows: Let X be a reflexive Banach space and let $T: X \rightarrow \mathbb{R}$ be coercive and weakly sequentially lower semicontinuous: then there exists $x_{0} \in X$ such that

$$
T\left(x_{0}\right)=\inf _{x \in X} T(x)
$$

Recalling that any Hilbert space is reflexive, it is enough to check that the functional $G: H \rightarrow \mathbb{R}$ is coercive and weakly sequentially lower semicontinuous. For the first issue, we claim that in fact

$$
\lim _{\|x\| \rightarrow+\infty} \frac{F(x)}{\|x\|}=+\infty
$$

at which stage one just needs to observe that $G(x) \geq F(x)-C\|x\|=\|x\|\left(\frac{F(x)}{\|x\|}-C\right)$, where we have set $C=\sum_{i=1}^{N}\left\|\ell_{i}\right\|_{H^{*}}$, so that indeed $\lim _{\|x\| \rightarrow \infty} G(x)=+\infty$ as a result of our claim $\lim _{\|x\| \rightarrow+\infty} \frac{F(x)}{\|x\|}=+\infty$. To justify the claim, we argue as follows; let $D_{F}:=\{(x, y) \in H \times \mathbb{R}: y>F(x)\}$ i. e. the epigraph of the function F, and let $\left(x_{0}, y_{0}\right) \in H \times \mathbb{R} \backslash D_{F}$ i.e. a point below the graph. By the weak separation theorem, which is applicable since $D_{F} \subset H \times \mathbb{R}$ is open thanks to the assumption that F is continuous, we can find $\ell \in H^{*}, c \in \mathbb{R}$ such that $F(x) \geq \ell(x)-c$, thus $F(x) \geq-\|\ell\|_{H^{*}}\|x\|-c$ which implies that $F(x) /\|x\|$ is bounded from below as one lets $\|x\| \rightarrow \infty$: this implies that there cannot be any sequence $\left(x_{k}\right)$ such that $\left\|x_{k}\right\| \rightarrow \infty$ while $F\left(x_{k}\right) /\left\|x_{k}\right\| \rightarrow-\infty$. This is precisely what one needs to gain the implication

$$
\lim _{\|x\| \rightarrow+\infty} \frac{|F(x)|}{\|x\|}=+\infty \Rightarrow \lim _{\|x\| \rightarrow+\infty} \frac{F(x)}{\|x\|}=+\infty
$$

Lastly, let us prove the lower semicontinuity of G. Using part (a) (for F) we have that if $x_{k} \xrightarrow{\mathrm{w}} x$ then $F(x) \leq \lim _{\inf }^{k \rightarrow \infty}$ $F\left(x_{k}\right)$ and for any given $\ell \in H^{*}$ trivially (by definition of weak convergence) $\ell\left(x_{k}\right) \rightarrow \ell(x)$ and thus also $\left|\ell\left(x_{k}\right)\right| \rightarrow|\ell(x)|$ as $k \rightarrow \infty$. Combining these two facts together gives $G(x) \leq \liminf _{k \rightarrow \infty} G\left(x_{k}\right)$.

Problem 4.

(a) For any $f \in L^{2}(\mathbb{R} ; \mathbb{C}), T f=f g$ is measurable and

$$
\|T f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}^{2}=\int_{\mathbb{R}^{\mathbb{R}}}|f g|^{2} d x \leq\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}^{2} \int_{\mathbb{R}}|f|^{2} d x=\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}^{2}\|f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}^{2} .
$$

In particular, $T f \in L^{2}(\mathbb{R} ; \mathbb{C})$ with $\|T f\|_{L^{2}(\mathbb{R} ; \mathbb{C})} \leq\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}\|f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}$. As T is clearly linear, this shows that T is a continuous linear operator with $\|T\| \leq\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}$.
We claim that $\|T\| \geq\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}$, which will show that $\|T\|=\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}$. If $\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}$ vanishes then this is trivial, otherwise for any $0<\varepsilon<\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}$ the set

$$
A_{\varepsilon}:=\left\{x \in \mathbb{R}:|g(x)|>\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}-\varepsilon\right\}
$$

has positive measure. Assume that $\left|A_{\varepsilon}\right|<\infty$: since $g \neq 0$ on A_{ε}, we can take $f:=\frac{\bar{g}}{|g|^{2}} \chi_{A_{\varepsilon}}$, which belongs to $L^{2}(\mathbb{R} ; \mathbb{C})$ since

$$
\int_{\mathbb{R}}|f|^{2} d x \leq\left(\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}-\varepsilon\right)^{-2}\left|A_{\varepsilon}\right|<\infty
$$

and moreover, being $T f=\chi_{A_{\varepsilon}}$,

$$
\|T\|^{2} \geq \frac{\|T f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}^{2}}{\|f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}^{2}}=\frac{\left|A_{\varepsilon}\right|}{\|f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}^{2}} \geq\left(\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}-\varepsilon\right)^{2}
$$

(notice that f does not vanish a.e.). If instead $\left|A_{\varepsilon}\right|=\infty$, we choose any radius $R>0$ such that $A_{\varepsilon} \cap B_{R}(0)$ has (finite) positive measure: this is possible because $\left|A_{\varepsilon}\right|=\lim _{R \rightarrow \infty}\left|A_{\varepsilon} \cap B_{R}(0)\right|$. Then we repeat the same argument with A_{ε} replaced by $A_{\varepsilon} \cap B_{R}(0)$, reaching again the conclusion $\|T\| \geq\|g\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})}-\varepsilon$. Since ε was arbitrary, the claim follows.
(b) If $\lambda \in \mathbb{C}$ does not belong to the essential image, then there exists $\varepsilon>0$ such that $g^{-1}\left(B_{\varepsilon}(\lambda)\right)$ has measure zero, which means that $|g(x)-\lambda| \geq \varepsilon$ for a.e. x. Hence, the function $h(x):=(\lambda-g(x))^{-1}$ (defined a.e.) belongs to $L^{\infty}(\mathbb{R} ; \mathbb{C})$, with $\|h\|_{L^{\infty}(\mathbb{R} ; \mathbb{C})} \leq \varepsilon^{-1}$, and the corresponding multiplication operator $S: L^{2}(\mathbb{R} ; \mathbb{C}) \rightarrow$ $L^{2}(\mathbb{R} ; \mathbb{C}), S f:=f h$ satisfies

$$
S(\lambda I-T)=I, \quad(\lambda I-T) S=I
$$

So $\lambda I-T$ is invertible, i.e. $\lambda \notin \sigma(T)$.
Assume instead that λ belongs to the essential image and, for any fixed $\varepsilon>0$, let $C_{\varepsilon}:=\{x:|g(x)-\lambda|<\varepsilon\}$, which has positive measure. As in (a), we truncate it with a ball $B_{R}(0)$ in the domain, in such a way that $0<\left|C_{\varepsilon} \cap B_{R}(0)\right|<\infty$. Taking f to be the characteristic function of $C_{\varepsilon} \cap B_{R}(0)$, we get $f \in L^{2}(\mathbb{R} ; \mathbb{C})$ and

$$
\frac{\|(\lambda I-T) f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}^{2}}{\|f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}^{2}}=\frac{\int_{C_{\varepsilon} \cap B_{R}(0)}|g(x)-\lambda|^{2} d x}{\left|C_{\varepsilon} \cap B_{R}(0)\right|} \leq \varepsilon^{2} .
$$

Now, if $\lambda I-T$ were invertible, we would have

$$
\|f\|_{L^{2}(\mathbb{R} ; \mathbb{C})} \leq\left\|(\lambda I-T)^{-1}\right\|\|(\lambda I-T) f\|_{L^{2}(\mathbb{R} ; \mathbb{C})} \leq \varepsilon\left\|(\lambda I-T)^{-1}\right\|\|f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}
$$

Thus, being $\|f\|_{L^{2}(\mathbb{R} ; \mathbb{C})}>0$, we would get $1 \leq \varepsilon\left\|(\lambda I-T)^{-1}\right\|$, which gives a contradiction if ε is chosen small enough. So in this case $\lambda \in \sigma(T)$.

Problem 5.

Choose $H=\mathbb{R}^{2}$. Let $A, B \in L\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ be given by

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Then,

$$
\|A\|=\|B\|=\|A+B\|=\|A-B\|=1 .
$$

Since $2 \neq 4$, the parallelogram identity $\|A+B\|^{2}+\|A-B\|^{2}=2\|A\|^{2}+2\|B\|^{2}$ is false in $L\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$. Therefore, $L\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ is not Hilbertean.

Problem 6.

(a) $\left(X,\|\cdot\|_{X}\right)$ is separable if X contains a countable, dense subset. The Banach space $\left(L^{\infty}((0,1)),\|\cdot\|_{L^{\infty}((0,1))}\right)$ is not separable.
(b) $\left(Y,\|\cdot\|_{Y}\right)$ is reflexive, if $\mathcal{I}: Y \rightarrow Y^{* *}$ given by $(\mathcal{I} x)(f)=f(x)$ is surjective. The Banach space $\left(L^{1}((0,1)),\|\cdot\|_{L^{1}((0,1))}\right)$ is not reflexive.
(c) Given $x \in X$, let $y_{n}=F_{n} x \in Y$. Then, the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ is bounded because

$$
\left\|F_{n} x\right\|_{Y} \leq\left\|F_{n}\right\|\|x\|_{X} \leq C\|x\|_{X}
$$

Since Y is reflexive, there exists an unbounded set $\Lambda \subset \mathbb{N}$ and some $y \in Y$ such that $y_{n} \xrightarrow{\mathrm{w}} y$ as $\Lambda \ni n \rightarrow \infty$ according to the Eberlein-Smulyan Theorem.
Since X is separable, there exists a dense subset $D=\left\{x_{1}, x_{2}, \ldots\right\} \subset X$. Towards a diagonal argument, let $\mathbb{N} \supset \Lambda_{1} \supset \Lambda_{2} \supset \ldots$ be the sets as above corresponding to the elements $x_{1}, x_{2}, \ldots \in D$. Let Λ_{∞} be a diagonal sequence. Let $x \in X$ and $\ell \in Y^{*}$ be arbitrary. Then, for $m, n \in \Lambda_{\infty}$ and $k \in \mathbb{N}$, using $\left\|F_{n}\right\| \leq C$ we obtain

$$
\begin{aligned}
\left|\ell\left(F_{n} x\right)-\ell\left(F_{m} x\right)\right| & \leq\left|\ell\left(\left(F_{n}-F_{m}\right)\left(x-x_{k}\right)\right)\right|+\left|\ell\left(F_{n}\left(x_{k}\right)\right)-\ell\left(F_{m}\left(x_{k}\right)\right)\right| \\
& \leq 2 C\|\ell\|_{Y^{*}}\left\|x-x_{k}\right\|_{X}+\left|\ell\left(F_{n}\left(x_{k}\right)\right)-\ell\left(F_{m}\left(x_{k}\right)\right)\right| .
\end{aligned}
$$

By density of D, the index k can be chosen such that $4 C\|\ell\|_{Y^{*}}\left\|x-x_{k}\right\|_{X}<\varepsilon$. By the diagonal argument, $\left(\ell\left(F_{n}\left(x_{k}\right)\right)\right)_{n \in \Lambda_{\infty}}$ is a Cauchy sequence. Hence, also $\left(\ell\left(F_{n} x\right)\right)_{n \in \Lambda_{\infty}}$ is a Cauchy sequence. Since ℓ is arbitrary, $\left(F_{n} x\right)_{n \in \Lambda_{\infty}}$ converges weakly.

Problem 7.

We note preliminarily that, set $\Pi_{j} \in L\left(H, H_{j}\right)$ the orthogonal projection onto H_{j}, we have

$$
v_{j}=\Pi_{j}(v)=\lim _{N \rightarrow \infty} \Pi_{j}\left(\sum_{\ell=1}^{N} v_{\ell}\right)=\lim _{N \rightarrow \infty} \sum_{\ell=1}^{N} \Pi_{j}\left(v_{\ell}\right) \quad \forall v \in H
$$

by continuity of Π_{j}. Moreover, being $H_{k} \perp H_{\ell}$ for $k \neq \ell$,

$$
\|v\|^{2}=\lim _{N \rightarrow \infty}\left\|\sum_{\ell=1}^{N} v_{\ell}\right\|^{2}=\lim _{N \rightarrow \infty} \sum_{\ell=1}^{N}\left\|v_{\ell}\right\|^{2}=\sum_{\ell=1}^{\infty}\left\|v_{\ell}\right\|^{2} .
$$

(\Leftarrow) Assume that A_{c} is compact. Since $H_{j} \neq\{0\}$ by hypothesis, for each $j \geq 1$ we can select an element $w_{j} \in H_{j}$ with $\left\|w_{j}\right\|=c_{j}$. Let us form the sequence

$$
\left(v^{(k)}\right)_{k=1}^{\infty} \subset H, \quad v^{(k)}:=\sum_{\ell=1}^{k} w_{j} .
$$

Note that $v^{(k)} \in A_{c}$ and that $v_{j}^{(k)}=w_{j} \quad \forall k \geq j$. By compactness of A_{c}, there exists an infinite subset $\Lambda \subset \mathbb{N}$ and a vector $v^{(\infty)} \in A_{c}$ such that $\lim _{\Lambda \ni k \rightarrow \infty} v^{(k)}=v^{(\infty)}$. But, by continuity of Π_{j},

$$
v_{j}^{(\infty)}=\Pi_{j}\left(v^{(\infty)}\right)=\lim _{\Lambda \ni k \rightarrow \infty} \Pi_{j}\left(v^{(k)}\right)=\lim _{\Lambda \ni k \rightarrow \infty} v_{j}^{(k)}=w_{j}
$$

and so

$$
\left\|v^{(\infty)}\right\|^{2}=\sum_{j=1}^{\infty}\left\|v_{j}^{(\infty)}\right\|^{2}=\sum_{j=1}^{\infty}\left\|w_{j}\right\|^{2}=\sum_{j=1}^{\infty} c_{j}^{2} .
$$

Since $\left\|v^{(\infty)}\right\|^{2}<\infty$, we deduce that $c \in \ell^{2}$.
(\Rightarrow) Assume that $c \in \ell^{2}$. Given a sequence $\left(v^{(k)}\right)_{k=1}^{\infty}$ in A_{c}, we want to find a converging subsequence. We will reach this goal by a diagonal argument: since H_{1} is finite-dimensional and $\left\|v_{1}^{(k)}\right\| \leq c_{1}$ for all k, we can find a subset $\Lambda_{1} \subset \mathbb{N}$ and a vector $v_{1, \infty} \in H_{1}$ such that

$$
\lim _{\Lambda_{1} \ni k \rightarrow \infty} v_{1}^{(k)}=v_{1, \infty}, \quad\left\|v_{1, \infty}\right\| \leq c_{1} .
$$

Similarly, we can find $\Lambda_{2} \subset \Lambda_{1}$ and $v_{2, \infty} \in H_{2}$ such that

$$
\lim _{\Lambda_{2} \ni k \rightarrow \infty} v_{2}^{(k)}=v_{2, \infty}, \quad\left\|v_{2, \infty}\right\| \leq c_{2}
$$

and so on. Denoting Λ the diagonal subsequence (formed by the first element of Λ_{1}, the second element of Λ_{2} and so on), we get

$$
\lim _{\Lambda \ni k \rightarrow \infty} v_{j}^{(k)}=v_{j, \infty}, \quad\left\|v_{j, \infty}\right\| \leq c_{j} \quad \forall j \geq 1
$$

We now claim that $v^{(\infty)}:=\sum_{j=1}^{\infty} v_{j, \infty}$ is well-defined, i.e. that $\lim _{N \rightarrow \infty} \sum_{j=1}^{N} v_{j, \infty}$ exists. Since H is complete, it suffices to show that we have a Cauchy sequence. Being $\sum_{j} c_{j}^{2}<\infty$, by orthogonality we get

$$
\left\|\sum_{j=m+1}^{n} v_{j, \infty}\right\|^{2}=\sum_{j=m+1}^{n}\left\|v_{j, \infty}\right\|^{2} \leq \sum_{j>m} c_{j}^{2}
$$

for $m<n$, which is infinitesimal as $m \rightarrow \infty$. Note that, by uniqueness, $v_{j}^{(\infty)}=v_{j, \infty}$, so $v^{(\infty)} \in A_{c}$. We now want to show that $v^{(k)} \rightarrow v^{(\infty)}$ along the subsequence Λ. Fix any $\varepsilon>0$ and choose $N_{\varepsilon} \geq 1$ such that $\sum_{j>N_{\varepsilon}} c_{j}^{2} \leq \varepsilon$ (here we use $c \in \ell^{2}$). Then

$$
\left\|v^{(k)}-v^{(\infty)}\right\|^{2}=\sum_{j=1}^{\infty}\left\|v_{j}^{(k)}-v_{j}^{(\infty)}\right\|^{2} \leq \sum_{j=1}^{N_{\varepsilon}}\left\|v_{j}^{(k)}-v_{j}^{(\infty)}\right\|^{2}+\sum_{j>N_{\varepsilon}}\left(2 c_{j}\right)^{2},
$$

where we used $\left\|v_{j}^{(k)}-v_{j, \infty}\right\| \leq 2 c_{j}$. Since each term in the finite sum is infinitesimal (as $\Lambda \ni k \rightarrow \infty$), for $k \in \Lambda$ large enough we get $\left\|v^{(k)}-v^{(\infty)}\right\|^{2} \leq 5 \varepsilon$. Since ε was arbitrary, this proves the desired convergence.

