Problem 1.

(a) Let $\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ be topological spaces. By definition,

$$
f: X_{1} \rightarrow X_{2} \text { open } \quad \Leftrightarrow \quad \forall \Omega \in \tau_{1}: \quad f(\Omega) \in \tau_{2} .
$$

The embedding $\mathbb{R} \hookrightarrow \mathbb{R}^{2}$ is continuous, injective but not open: Indeed, the set $\mathbb{R} \times\{0\} \subset \mathbb{R}^{2}$ is not open in \mathbb{R}^{2}.
(b) Statement of the open mapping theorem:

Let X, Y be Banach spaces and let $A: X \rightarrow Y$ be linear, continuous and surjective. Then A is open.
(c) Towards a contradiction, suppose $T: \ell^{1} \rightarrow \ell^{\infty}$ is linear, continuous and bijective. By the open mapping theorem, T is open, hence $T^{-1}: \ell^{\infty} \rightarrow \ell^{1}$ is continuous. Consequently, $T: \ell^{1} \rightarrow \ell^{\infty}$ would be a homeomorphism. This contradicts the fact that ℓ^{1} is separable and ℓ^{∞} is not.

Problem 2.

(a) The map F is coercive, because $F(x) \geq\left\|x-x_{1}\right\|_{X}^{2} \rightarrow \infty$ as $\|x\|_{X} \rightarrow \infty$. Moreover F is weakly sequentially lower semicontinuous because the map $x \mapsto\|x\|_{X}$ is.
Since X is reflexive, the Direct Method ["Variationsprinzip", Satz 5.4.1] applies and we obtain $\bar{x} \in X$ satisfying

$$
F(\bar{x})=\inf _{x \in X} F(x) .
$$

(b) Suppose, $\bar{y} \in X \backslash\{\bar{x}\}$ is another minimiser of F and consider $\bar{z}=\frac{1}{2}(\bar{x}+\bar{y})$.

In the Hilbertean case, the parallelogram identity holds and implies

$$
\begin{aligned}
\left\|\bar{z}-x_{i}\right\|_{X}^{2} & =\left\|\frac{\bar{x}-x_{i}}{2}+\frac{\bar{y}-x_{i}}{2}\right\|_{X}^{2} \\
& =2\left\|\frac{\bar{x}-x_{i}}{2}\right\|_{X}^{2}+2\left\|\frac{\bar{y}-x_{i}}{2}\right\|_{X}^{2}-\|\underbrace{\frac{\bar{x}-x_{i}}{2}-\frac{\bar{y}-x_{i}}{2}}_{\neq 0}\|_{X}^{2} \\
& <\frac{\left\|\bar{x}-x_{i}\right\|_{X}^{2}}{2}+\frac{\left\|\bar{y}-x_{i}\right\|_{X}^{2}}{2} .
\end{aligned}
$$

Hence, a contradiction follows from

$$
F(\bar{z})<\frac{F(\bar{x})}{2}+\frac{F(\bar{y})}{2}=\inf _{x \in X} F(x)
$$

which proves that the minimiser is unique.
Moreover, if $\|\cdot\|_{X}$ is induced by the scalar product $\langle\cdot, \cdot\rangle_{X}$, then the minimiser $\bar{x} \in X$ of F has the property that

$$
\forall y \in X: \quad 0=\left.\frac{d}{d t}\right|_{t=0} F(\bar{x}+t y)=\sum_{i=1}^{n}\left\langle y, \bar{x}-x_{i}\right\rangle_{X}=\left\langle y, \sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)\right\rangle_{X} .
$$

Consequently,

$$
\sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)=0 \quad \Rightarrow \quad n \bar{x}=\sum_{i=1}^{n} x_{i} \quad \Rightarrow \quad \bar{x}=\sum_{i=1}^{n} \frac{1}{n} x_{i}
$$

which proves that \bar{x} is in the convex hull of $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$.

Problem 3.

(a) The distance $d(\cdot, \cdot)$ on the vector space V is induced by a norm if and only if

$$
\begin{array}{lrl}
\forall x, y, v \in V: & d(x+v, y+v) & =d(x, y), \\
\forall x, y \in V \quad \forall \lambda \in \mathbb{R}: \quad d(\lambda x, \lambda y) & =|\lambda| d(x, y) .
\end{array}
$$

(b) Let $f \in C^{0}([0, \infty[) \backslash\{0\}$ be supported in $[0,1]$ and let $\lambda>0$. Then

$$
d(\lambda f, 0)=\left(\sum_{n=1}^{\infty} 2^{-n}\right) \frac{\lambda\|f\|_{C^{0}([0,1])}}{1+\lambda\|f\|_{C^{0}([0,1])}} \xrightarrow{\lambda \rightarrow \infty} 1
$$

which proves that d is not homogeneous and thus not induced by a norm.

Problem 4.

(a) T is not extendable to a bounded linear operator $T: c_{0} \rightarrow \ell^{1}$. In fact, denoting $e_{k}=(0, \ldots, 0,1,0, \ldots, 0)$, we have for all $k \in \mathbb{N}$

$$
\left\|T e_{k}\right\|_{\ell^{1}}=k-1=(k-1)\left\|e_{k}\right\|_{\ell \infty} .
$$

(b) Since $\left(\ell^{1}\right)^{*} \cong \ell^{\infty}$ and $\left(c_{0}\right)^{*} \cong \ell^{1}$ (compare Problem 8.1) we have

$$
D_{T^{*}}=\left\{y \in \ell^{\infty} \mid c_{c} \ni x \mapsto \sum_{n \in \mathbb{N}} y_{n}(T x)_{n} \text { is continuous }\right\} .
$$

The map $A:\left(c_{c},\|\cdot\|_{\ell \infty}\right) \rightarrow \mathbb{R}$ given by

$$
A x=\sum_{n \in \mathbb{N}} y_{n}(T x)_{n}=\sum_{n=0}^{\infty} y_{n} n x_{n+1}=\sum_{k=1}^{\infty} y_{k-1}(k-1) x_{k}
$$

is continuous if

$$
\sum_{n \in \mathbb{N}}\left|n y_{n}\right|<\infty
$$

because

$$
|A x|=\left|\sum_{n \in \mathbb{N}} n y_{n} x_{n+1}\right| \leq\|x\|_{\ell_{\infty}} \sum_{n \in \mathbb{N}}\left|n y_{n}\right| .
$$

Conversely, if A is continuous, we consider $x^{(N)}=\left(x_{n}^{(N)}\right)_{n \in \mathbb{N}} \in c_{c}$ with $x_{n}^{(N)}=\frac{y_{n}}{\left|y_{n}\right|}$ for $n \leq N$ and $x_{n}^{(N)}=0$ for $n>N$ to obtain

$$
\|A\|=\|A\|\left\|x^{(N)}\right\| \geq\left|A x^{(N)}\right|=\left|\sum_{n=0}^{N-1}\right| n y_{n}| | .
$$

Since $N \in \mathbb{N}$ is arbitrary, we conclude

$$
\sum_{n \in \mathbb{N}}\left|n y_{n}\right|<\infty .
$$

Hence, $D_{T^{*}}=\left\{y \in \ell^{\infty}\left|\sum_{n \in \mathbb{N}}\right| n y_{n} \mid<\infty\right\}$ and

$$
\left(T^{*} y\right)_{n}= \begin{cases}(n-1) y_{n-1} & (n \geq 1) \\ 0 & (n=0)\end{cases}
$$

(c) The operator is closable. Indeed, suppose $x^{(k)} \in c_{c}$ for $k \in \mathbb{N}$ satisfy

$$
\left\|x^{(k)}\right\|_{\ell^{\infty}} \rightarrow 0, \quad\left\|T x^{(k)}-y\right\|_{\ell^{1}} \rightarrow 0 \quad(k \rightarrow \infty)
$$

for some $y \in \ell^{1}$. For every fixed $n \in \mathbb{N}$ in particular,

$$
x_{n}^{(k)} \rightarrow 0, \quad n x_{n}^{(k)} \rightarrow y_{n} \quad(k \rightarrow \infty)
$$

which implies $y_{n}=0$ for all $n \in \mathbb{N}$. Hence, T is closable.
Moreover, by definition,

$$
D_{\bar{T}}=\left\{x \in c_{0} \mid \exists\left(x^{(k)}\right)_{k \in \mathbb{N}} \subset c_{c}, y \in \ell^{1}:\left(x^{(k)}, T x^{(k)}\right) \rightarrow(x, y)\right\} .
$$

Consider $x=\left(n^{-3}\right)_{n \in \mathbb{N}} \in c_{0} \backslash c_{c}$ and $y=\left(n^{-2}\right)_{n \in \mathbb{N}} \in \ell^{1}$. Let $x^{(k)} \in c_{c}$ be the truncation of x at index k. Then, $x^{(k)} \rightarrow x$ in c_{0} and

$$
\left\|T x^{(k)}-y\right\|_{\ell^{1}}=\sum_{n=k}^{\infty} n^{-2} \xrightarrow{k \rightarrow \infty} 0 .
$$

Therefore, $x \in D_{\bar{T}}$.

Problem 5.

(a) Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space and let $A: H \rightarrow H$ be linear, compact and selfadjoint and $A \neq 0$. Then there exist at most countably many eigenvalues $\lambda_{k} \in \mathbb{R} \backslash\{0\}$ which can accumulate only at $0 \in \mathbb{R}$ and corresponding eigenvectors $e_{k} \in H$ such that

$$
\forall x \in H: \quad A x=\sum_{k} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}
$$

(b) As an orthogonal complement of $H^{\prime \prime}$ the subspace $H^{\prime} \subset H$ is closed and $\left(H^{\prime},\langle\cdot, \cdot\rangle\right)$ is Hilbertean. Let $B_{1} \subset H$ be the unit ball in H and $B_{1}^{\prime} \subset H^{\prime}$ the unit ball in H^{\prime}.

Then, $\overline{A^{\prime} B_{1}^{\prime}}=\overline{A B_{1}^{\prime}}$ is compact as closed subset of the compact set $\overline{A B_{1}}$.
Therefore, $A^{\prime}: H^{\prime} \rightarrow H^{\prime}$ and analogously $A^{\prime \prime}: H^{\prime \prime} \rightarrow H^{\prime \prime}$ are compact operators.
Moreover,

$$
\forall x, y \in H^{\prime}: \quad\left\langle A^{\prime} x, y\right\rangle=\langle A x, y\rangle=\langle x, A y\rangle=\left\langle x, A^{\prime} y\right\rangle
$$

Hence, $A^{\prime}: H^{\prime} \rightarrow H^{\prime}$ is symmetric and hence self-adjoint being defined on all of H^{\prime}. Self-adjointness of $A^{\prime \prime}: H^{\prime \prime} \rightarrow H^{\prime \prime}$ follows analogously.
(c) The Courant-Fischer characterization of the k-th eigenvalue λ_{k} of A is

$$
\lambda_{k}=\sup _{\substack{M \subset H, \operatorname{dim} M=k}} \inf _{\substack{x \in M,\|x\|=1}}\langle x, A x\rangle
$$

(d) By the Courant-Fischer characterization

$$
\lambda_{1}=\sup _{\substack{x \in H,\|x\|=1}}\langle x, A x\rangle \geq \sup _{\substack{x^{\prime} \in H^{\prime} \\\left\|x^{\prime}\right\|=1}}\left\langle x^{\prime}, A x^{\prime}\right\rangle=\sup _{\substack{x^{\prime} \in H^{\prime} \\\left\|x^{\prime}\right\|=1}}\left\langle x^{\prime}, A^{\prime} x^{\prime}\right\rangle=\lambda_{1}^{\prime} .
$$

Analogously, $\lambda_{1} \geq \lambda_{1}^{\prime \prime}$, hence we have $\lambda_{1} \geq \max \left\{\lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}\right\}$.
If $e_{1}=e_{1}^{\prime}+e_{1}^{\prime \prime} \in H^{\prime} \oplus H^{\prime \prime}$ is an eigenvector of A to its first eigenvalue $\lambda_{1}>0$, then

$$
\begin{aligned}
A^{\prime} e_{1}^{\prime}+A^{\prime \prime} e_{1}^{\prime \prime} & =A e_{1}=\lambda_{1} e_{1}^{\prime}+\lambda_{1} e_{1}^{\prime \prime} \\
\Rightarrow\left\langle e_{1}^{\prime}, A^{\prime} e_{1}^{\prime}\right\rangle & =\lambda_{1}\left\langle e_{1}^{\prime}, e_{1}^{\prime}\right\rangle \\
\Rightarrow\left\langle e_{1}^{\prime \prime}, A^{\prime \prime} e_{1}^{\prime \prime}\right\rangle & =\lambda_{1}\left\langle e_{1}^{\prime \prime}, e_{1}^{\prime \prime}\right\rangle
\end{aligned}
$$

If $e_{1}^{\prime} \neq 0$, then $e_{1}^{\prime} /\left\|e_{1}^{\prime}\right\|$ it is a competitor for λ_{1}^{\prime} and we obtain $\lambda_{1}^{\prime} \geq \lambda_{1}$. If $e_{1}^{\prime \prime} \neq 0$, then $e_{1}^{\prime \prime} /\left\|e_{1}^{\prime \prime}\right\|$ it is a competitor for $\lambda_{1}^{\prime \prime}$ and we obtain $\lambda_{1}^{\prime \prime} \geq \lambda_{1}$. Since $e_{1} \neq 0$, one of these two cases must be true, we conclude $\lambda_{1}=\max \left\{\lambda_{1}, \lambda_{2}\right\}$.

Problem 6.

(a) Let $\Omega \subset \mathbb{R}^{n}$ be bounded.

A subset $M \subset C^{0}(\bar{\Omega})$ is relatively sequentially compact, if and only if

$$
\begin{aligned}
& \sup _{f \in M}\|f\|_{C^{0}(\bar{\Omega})}<\infty \quad \text { and } \\
& \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x, y \in \Omega \quad \forall f \in M: \quad(|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon) .
\end{aligned}
$$

(b) Let $S \subset C^{0}([0,1])$ be a linear subspace which is closed with respect to $\|\cdot\|_{C^{0}}$ and satisfies $S \subset C^{1}([0,1])$.
Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in S and let $f \in C^{0}([0,1])$ and $g \in C^{1}([0,1])$ such that $\left\|f_{k}-f\right\|_{C^{0}([0,1])}+\left\|f_{k}-g\right\|_{C^{1}([0,1])} \rightarrow 0$ as $k \rightarrow \infty$. In particular, $\left\|f_{k}-g\right\|_{C^{0}([0,1])} \rightarrow 0$ as $k \rightarrow \infty$. By uniqueness of limits, $f=g \in C^{1}([0,1])$. Hence, the graph of the inclusion map $S \hookrightarrow C^{1}([0,1])$ is closed.
(c) Since $S \subset C^{0}([0,1])$ a closed subspace, $\left(S,\|\cdot\|_{C^{0}}\right)$ is a Banach space. Since the inclusion map $S \hookrightarrow C^{1}([0,1])$ is linear with closed graph by (b), the closed graph theorem states that $S \hookrightarrow C^{1}([0,1])$ is continuous. In particular,

$$
\exists C<\infty \quad \forall f \in S: \quad\|f\|_{C^{1}([0,1])} \leq C\|f\|_{C^{0}([0,1])} .
$$

Let $B_{1} \subset S$ be the unit ball in $\left(S,\|\cdot\|_{C^{0}}\right)$. Then, $\sup _{f \in B_{1}}\|f\|_{C^{0}([0,1])}=1$ and

$$
\forall f \in B_{1}: \quad|f(x)-f(y)| \leq\left\|f^{\prime}\right\|_{C^{0}([0,1))}|x-y| \leq C|x-y| .
$$

Hence, the Arzelà-Ascoli theorem applies and yields that $\overline{B_{1}} \subset S$ is compact.
Consequently, S is finite dimensional since the closed unit ball would be non-compact otherwise.

Problem 7.

(a) We first observe that $F_{p, N} \subset L^{p}(\Omega) \subset L^{1}(\Omega)$, being $|\Omega|<\infty$.

Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $F_{p, N}$ converging to some f in $L^{1}(\Omega)$. Up to subsequences, we can assume that $f_{k} \rightarrow f$ pointwise a.e.

If $p<\infty$ then Fatou's lemma gives

$$
\int_{\Omega}|f(x)|^{p} d x=\int_{\Omega} \lim _{k \rightarrow \infty}\left|f_{k}(x)\right|^{p} d x \leq \liminf _{k \rightarrow \infty} \int_{\Omega}\left|f_{k}(x)\right|^{p} d x \leq N^{p}
$$

so that $\|f\|_{L^{p}} \leq N$, i.e. $f \in F_{p, N}$.
If $p=\infty$, we can find negligible sets $E^{\prime}, E_{k} \subset \Omega$ such that $f_{k} \rightarrow f$ everywhere on $\Omega \backslash E^{\prime}$ and $\left|f_{k}\right| \leq N$ everywhere on $\Omega \backslash E_{k}$. Setting $E:=E^{\prime} \cup\left(\cup_{k} E_{k}\right)$, we get

$$
|f(x)|=\lim _{k \rightarrow \infty}\left|f_{k}(x)\right| \leq N \quad \forall x \in \Omega \backslash E .
$$

Since E is negligible, we infer that $\|f\|_{L^{\infty}} \leq N$, i. e. $f \in F_{\infty, N}$.
(b) We claim that

$$
X=\bigcup_{n=1}^{\infty} X_{n}, \quad X_{n}:=X \cap F_{1+\frac{1}{n}, n}
$$

Indeed, if $f \in X$ then by hypothesis $f \in L^{p}(\Omega)$ for some $p>1$. For n large enough we have $p_{n}:=1+\frac{1}{n}<p$ and, by Hölder's inequality,

$$
\|f\|_{L^{p_{n}}}^{p_{n}}=\int_{\Omega}|f(x)|^{p_{n}} d x \leq\left(\int_{\Omega}|f(x)|^{p} d x\right)^{\frac{p_{n}}{p}}|\Omega|^{1-\frac{p_{n}}{p}}
$$

(if $p<\infty$), so that $\|f\|_{L^{p_{n}}} \leq\|f\|_{L^{p}}|\Omega|^{\frac{1}{p_{n}}-\frac{1}{p}}$ (which is trivially true also when $p=\infty$). We deduce that $\|f\|_{L^{p_{n}}} \leq\|f\|_{L^{p}} \max \{|\Omega|, 1\}$. Hence, if n is large enough we get $f \in X_{n}$.

By (a) the set X_{n} is closed in X. The vector space X is a Banach space (hence a complete metric space) with the L^{1}-norm, being X closed in $L^{1}(\Omega)$. By Baire's category theorem applied to X, there exists n_{0} such that $X_{n_{0}}$ has nonempty interior in X. This means that, for some $f_{0} \in X$ and some $r_{0}>0$,

$$
X \cap B_{r_{0}}^{L^{1}}\left(f_{0}\right) \subset X_{n_{0}} \subset L^{1+\frac{1}{n_{0}}}(\Omega)
$$

In particular $f_{0} \in X \cap L^{1+\frac{1}{n_{0}}}(\Omega)$, so translating by $-f_{0}$ we get

$$
X \cap B_{r_{0}}^{L^{1}}(0)=\left(X-f_{0}\right) \cap B_{r_{0}}^{L^{1}}(0) \subset L^{1+\frac{1}{n_{0}}}(\Omega)-f_{0}=L^{1+\frac{1}{n_{0}}}(\Omega)
$$

Thus, choosing $q:=1+\frac{1}{n_{0}}$,

$$
X=\bigcup_{s>0}\left(X \cap B_{s r_{0}}^{L^{1}}(0)\right)=\bigcup_{s>0} s\left(X \cap B_{r_{0}}^{L^{1}}(0)\right) \subset \bigcup_{s>0} s L^{q}(\Omega)=L^{q}(\Omega)
$$

(c) As already observed, $\left(X,\|\cdot\|_{L^{1}}\right)$ and $\left(L^{q}(\Omega),\|\cdot\|_{L^{q}}\right)$ are both Banach spaces. Let us apply the closed graph theorem to the (linear) inclusion map $X \subset L^{q}(\Omega)$: this map has closed graph because, whenever (f, g) belongs to the closure of the graph, there exists a sequence f_{k} such that $\left(f_{k}, f_{k}\right)$ converges to (f, g) in $X \times L^{q}(\Omega)$, hence up to subsequences f_{k} converges pointwise a. e. to both f and g, proving that $f=g$ and thus that $(f, g)=(f, f)$ lies in the graph. The closed graph theorem tells us that the inclusion map is continuous. The statement follows by the characterization of continuous linear maps.

