8.1. Duality of sequence spaces 🛸.

- (i) Recall Problem 2.4.
- (ii) Follow the proof that $(L^p(\Omega))^*$ is isometrically isomorphic to $L^q(\Omega)$ for $\frac{1}{p} + \frac{1}{q} = 1$ (Satz 4.4.1) and construct an isometry $\Psi \colon \ell^1 \to c_0^*$ analogously. To prove surjectivity, show that every functional $f \in c_0^*$ is determined by its values on the elements $e^{(k)} = (e_n^{(k)})_{n \in \mathbb{N}} \in c_0$, where $e^{(k)} = (0, \ldots, 0, 1, 0, \ldots)$ has the 1 at k-th position.
- (iii) Find a bijective linear map $T: c \to c_0$ and compose functionals in c_0^* with T to obtain functionals in c^* .

8.2. A result by Lions-Stampacchia \clubsuit **\diamondsuit.** Check that the Lax-Milgram Theorem applies to $a(\cdot, \cdot)$ and prove that there exists a unique $x_0 \in H$ with $J(x) = a(x - x_0, x - x_0) - a(x_0, x_0)$.

For the first inequality, show that $(H, a(\cdot, \cdot))$ is a Hilbert space and apply the result of Problem 7.6 (ii) in $(H, a(\cdot, \cdot))$. Note that convexity of K is used here.

For the second inequality, combine and exploit convexity of K and the minimality property of y_0 .

8.3. Projection to convex sets $\mathfrak{S}^{\bullet}_{\bullet}$. Use the second inequality of Problem 8.2 (for $a(\cdot, \cdot) = (\cdot, \cdot)_H$ with $y_0 = Px_0$) to prove that if $y \in K$, then $(Px_0 - x_0, y - Px_0)_H \ge 0$ for any $x_0 \in H$. You can use this twice in (i) and once in (ii).

8.4. Strict convexity \square .

- (i) Suppose two different elements in X^* have the property in question. Divide by $||x||_X^2$ such that everything has norm 1 and apply strict convexity of X^* with $\lambda = 1/2$.
- (ii) You can find a finite dimensional example.

8.5. Uniform convexity $\mathbf{\mathscr{D}}$.

- (i) Recall the parallelogram identity (cf. Problem 1.2).
- (ii) The supremum norm is usually a good counterexample for strict and uniform convexity.

8.6. Functional on the span of a sequence \mathfrak{C} . Read the inequality in (ii) as $|\tilde{\ell}(y)| \leq \gamma ||y||_X$ for some functional $\tilde{\ell}$ defined on a suitable subspace of X which can be extended to X using the Hahn-Banach Theorem.