9.1. Minkowski functional 🌣. Recall the definition of the Minkowski functional

$$p\colon X \to \mathbb{R}$$
$$x \mapsto \inf\{\lambda > 0 \mid \frac{1}{\lambda}x \in Q\}.$$

Define the set $\Upsilon \subset X^*$ by using p and prove the two inclusions. By showing p(x) < 1 for $x \in Q$, one inclusion follows directly. Prove the other inclusion indirectly.

(The set $\Upsilon \subset X^*$ is not required to be open.)

9.2. Extremal subsets 2.

- (i) Show that E is a subset of the boundary ∂K . Derive a contradiction to $E \subset \partial K$ under the assumption that E is not closed.
- (ii) Draw a picture.
- (iii) $K \setminus M$ being not convex contradicts the definition of extremal subset. Notice where convexity of K is used.
- (iv) Have you tried intervals?
- (v) If $y \in K$ is an extremal point of K, then $\{y\} \subset K$ is an extremal subset of K.

9.3. Weak sequential continuity of linear operators 2. Prove (ii) \Rightarrow (i) by contradiction and use that weakly convergent sequences must be bounded (Satz 4.6.1).

9.4. Weak convergence in finite dimensions (2). Recall that all norms are equivalent in finite dimensions.

9.5. Weak convergence in Hilbert spaces $\mathbf{\mathscr{D}}$.

- (i) $x_n \xrightarrow{w} x$ implies $(x, x_n)_H \to (x, x)_H$.
- (ii) Weakly convergent sequences are bounded.
- (iii) Recall Bessel's inequality.
- (iv) Use (iii).
- (v) Use (iii).

9.6. Sequential closure $\mathbf{\mathscr{D}}$.

- (i) Argue by contradiction.
- (ii) Aim at finding a set $\Omega \subset \ell^2$ such that $(0) := (0, 0, \ldots) \in \overline{\Omega}_w$ but no sequence in Ω converges weakly to zero: $(0) \notin \overline{\Omega}_{w-seq}$. Notice that such $\Omega \subset \ell^2$ must be unbounded. Recall what $(0) \in \overline{\Omega}_w$ and $(0) \notin \overline{\Omega}_{w-seq}$ both mean by definition.

9.7. Convex hull **\$\$**.

(i) First note that arbitrary subsets $\Omega \subset X$ satisfy the inclusions

$$\Omega \subset \overline{\Omega} \subset \overline{\Omega}_{w-\text{seq}} \subset \overline{\Omega}_{w},$$

where $\overline{\Omega}$ denotes the closure in the norm-topology, $\overline{\Omega}_{w-\text{seq}}$ the weak-sequential closure and $\overline{\Omega}_w$ the closure in the weak topology. Mazur's Lemma is based on the fact that for convex sets, the closure with respect to the norm-topology agrees with the closure in the weak topology (Satz 4.6.2).

(ii) Show first that

$$\operatorname{conv}(A \cup B) = \bigcup_{\substack{s,t \ge 0\\s+t=1}} (sA + tB)$$

and then argue that the right hand side is compact.