10.1. Project: The weak topology is not metrizable $\theta=$

(i) With a metric, a countable neighbourhood basis can be constructed explicitly.
(ii) How does any open set in the weak topology which contains the origin look like?
(iii) Prove that if $\varphi: X \rightarrow \mathbb{R}^{n}$ and $f: X \rightarrow \mathbb{R}$ are linear maps such that $\operatorname{ker} \varphi \subset \operatorname{ker} f$, then there exists a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f=F \circ \varphi$. Then choose φ wisely.

(iv) If $\left\{A_{\alpha}\right\}_{\alpha \in \mathbb{N}}$ is a countable neighbourhood basis of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$ then each A_{α} contains one of the neighbourhoods of the neighbourhood basis constructed in (ii). Use this fact to construct a countable set $F \subset X^{*}$ such that every $f^{*} \in X^{*}$ is a linear combination of finitely many elements in F. Apply part (iii) for this last step.
(v) Recall that $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ is always complete.

10.2. Non-compactness -

(i) Find a sequence of bounded functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that for any pair $n, m \in \mathbb{N}$ with $n \neq m$ the difference $f_{n}-f_{m}$ is non-zero on a set of measure $\frac{1}{2}$.
(ii) The simplest sequence works.
10.3. Separability . Are subsets of separable sets separable?

How can a countable dense set in S be "scaled" to a countable dense set in X ?

10.4. Quadratic functional on a reflexive space \square.

(i) Apply the direct method (cf. "Variationsprinzip", Satz 5.4.1).
(ii) If there exists another minimum \bar{y}, then $F\left(\frac{\bar{x}+\bar{y}}{2}\right)<\frac{F(\bar{x})+F(\bar{y})}{2}$. To prove that \bar{x} is contained in the convex hull of $\left\{x_{1}, \ldots, x_{n}\right\}$, observe that $\left.\frac{d}{d t}\right|_{t=0} F(\bar{x}+t y)=0$ for all $y \in X$.
10.5. A class of functionals on a reflexive space \square. Prove that $\alpha_{0}=2$. Indeed, on one hand it is possible to apply the direct method to F_{α} for $0 \leq \alpha<2$. On the other hand, for $\alpha>2$ there are easy finite dimensional examples for which $\inf _{x \in X} F_{\alpha}(x)=-\infty$.

