11.1. Dual operators **C**. Every statement follows directly from the property which characterises dual operators. You can apply (i) and (ii) to show (iii).

11.2. Isomorphisms and isometries \mathfrak{C} . Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and $T \in L(X, Y)$. Prove the following statements.

- (i) Apply Problem 11.1 (iii).
- (ii) Due to part (i) it suffices to show $||T^*y^*||_{X^*} = ||y^*||_{Y^*}$ for every $y^* \in Y^*$.
- (iii) Combine part (i) respectively (ii) with the result of Problem 11.1 (iv).
- (iv) Apply part (i) twice and reuse the result of Problem 11.1 (iv).

11.3. Operator on compact sequences \Box .

- (i) The answer is no. In particular the operator T is not bounded in c_c .
- (ii) Recall that $(\ell^1)^* \cong \ell^\infty$ and $(c_0)^* \cong \ell^1$. Then prove that $A: (c_c, \|\cdot\|_{\ell^\infty}) \to \mathbb{R}$ given by $Ax := \sum_{n \in \mathbb{N}} y_n(Tx)_n$ is continuous if and only if $\sum_{n \in \mathbb{N}} |ny_n| < \infty$.
- (iii) Show that, if $x^{(k)} \in c_c$ converges to 0 in ℓ^{∞} and $Tx^{(k)}$ converges to some $y \in \ell^1$, then y = 0. This implies that T is closable. To find an element in $D_{\overline{T}} \setminus c_c$, consider an $x = (x_n)_{n \in \mathbb{N}} \in c_c \setminus c_0$ such that x_n goes to zero sufficiently fast as $n \to \infty$.

11.4. Compact operators 🗱.

- (i) A sequence in $\overline{T(B_1(0))}$ can be approximated by a sequence in $T(B_1(0))$ which is the image of a (bounded) sequence in $B_1(0)$.
- (ii) Use (i) and a diagonal sequence argument.
- (iii) In finite dimensions, sets which are bounded and closed are compact.
- (iv) Use (i) and continuity of T respectively S.
- (v) Apply the Eberlein–Šmulian theorem.

11.5. Integral operators $\boldsymbol{\mathscr{D}}$.

- (i) Apply Hölder's inequality and Fubini's theorem.
- (ii) By Fubini's theorem, $k(x, \cdot) \in L^2(\Omega)$ for almost every $x \in \Omega$. Apply the dominated convergence theorem in $L^2(\Omega)$. You may use Problem 11.4 (v) to conclude.

11.6. Operator that is (almost) injective \Box .

- (i) Assume by contradiction that there exist $x_k \in X$ with $||x_k||_X = 1$ and $||Px_k||_Y = 1/k$. Using (*) and the compactness of J prove that $x_k \to x_\infty$ and find a contradiction.
- (ii) Show that the unit ball in ker(P) is relatively compact, which implies that ker(P) has finite dimension. Then use Problem 7.2 to write $X = \text{ker}(P) \oplus W$.