12.1. Uniform subconvergence **A**. Apply the Arzelà–Ascoli theorem.

12.2. Sequence with bounded Hölder norm \Box .

- (i) Apply the Arzelà–Ascoli theorem.
- (ii) Use Hölder's inequality.
- (iii) Use (i) to prove that T is a compact operator from X to $Y = C^0([0,1],\mathbb{R})$.

12.3. Multiplication operators on complex-valued sequences $\boldsymbol{x}_{\bullet}^{\bullet}$.

- (i) Computing $||Te_k||_{\ell^2_{\mathbb{C}}}$ for $e_k = (0, \dots, 0, 1, 0, \dots) \in \ell^2_{\mathbb{C}}$ yields a lower bound on ||T||.
- (ii) Compute the adjoint operator T^* explicitly.
- (iii) To prove " \Leftarrow ", show that the components $x_n^{(k)}$ of any bounded sequence $(x^{(k)})_{k\in\mathbb{N}}$ in $\ell^2_{\mathbb{C}}$ converge in \mathbb{C} as $k \to \infty$ (up to subsequence).

12.4. A compact operator on continuous functions \blacksquare .

(i) Compute the integral

$$\int_{a}^{x} \frac{1}{\sqrt{x-t}} \,\mathrm{d}x.$$

- (ii) Apply the Arzelà–Ascoli theorem.
- (iii) Recall the definition of spectral radius and appeal to part(i).

12.5. A multiplication operator on square-integrable functions \blacksquare .

- (i) Computing $||T\chi||_{L^2([a,b];\mathbb{C})}$ for characteristic functions χ supported near *a* respectively *b* yields a lower bound on ||T||.
- (ii) Recall that $Tf = \lambda f$ in $L^2([a, b])$ means $(Tf)(x) = \lambda f(x)$ for almost all $x \in [a, b]$.
- (iii) Part (ii) implies that the operator (λT) is injective for any $\lambda \in \mathbb{C}$. For which $\lambda \in \mathbb{C}$ is the operator $(\lambda T) \colon L^2([a,b];\mathbb{C}) \to L^2([a,b];\mathbb{C})$ also surjective? As an example, compute f such that $(\lambda T)f = 1 \in L^2([a,b])$.