13.1. Definitions of resolvent set \mathbb{G}. Given $\lambda \in \tilde{\rho}(A)$, prove that $(\lambda-A): D_{A} \rightarrow X$ is surjective.

13.2. Unitary operators

(i) Why do isometries $T \in L(H, H)$ satisfy $\langle T x, T y\rangle_{H}=\langle x, y\rangle_{H}$ for every $x, y \in H$?
(ii) Recall that the spectral radius of any operator T is bounded from above by $\|T\|$ and recall the statements of Satz 6.5.3.i and Satz 2.2.7.
13.3. Integral operators revisited © Recall the properties of K proven in Problem 11.5. Check that K and A are both self-adjoint operators. Conclude as in the proof of Beispiel 6.5.2.

13.4. Resolvents and spectral distance \otimes_{θ}^{*}.

(i) Prove $R_{\lambda}^{*}=R_{\bar{\lambda}}$ and use that resolvents to different values commute (Satz 6.5.2).
(ii) Argue, that it suffices to show the following implication for any $\alpha \in \mathbb{C}$.

$$
\inf _{\beta \in \sigma(B)}|\alpha-\beta|>\|A-B\|_{L(H, H)} \quad \Rightarrow \alpha \in \rho(A) .
$$

Given $f_{\alpha}(z)=(\alpha-z)^{-1}$, the spectral mapping theorem implies $f_{\alpha}(\sigma(B))=\sigma\left(f_{\alpha}(B)\right)$. Show that normal operators R have spectral radius $r_{R}=\|R\|$. Apply Satz 2.2.7.

13.5. Compact operator on space decomposition \square.

(i) Nothing more than stating the theorem.
(ii) First note that H^{\prime} and $H^{\prime \prime}$ are closed. Then use that the closure of the image of the unit ball of H^{\prime} via A^{\prime} is contained in the closure of the image of the unit ball of H via A, which is compact. The self-adjointness is easy to check.
(iii) Nothing more than the definition.
(iv) To prove that $\lambda_{1} \geq \max \left\{\lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}\right\}$ use the Courant-Fischer characterization. For the other inequality apply the orthogonal decomposition in (ii) to an eigenvector e_{1} of A relative to the first eigenvalue λ_{1}.
13.6. Heisenberg's uncertainty principle $\boldsymbol{\theta}_{\boldsymbol{\prime}}$. Be pedantic about operator domains.
(i) Apply the Cauchy-Schwarz inequality.
(ii) To apply part (i), find symmetric operators $\tilde{A}=A-\lambda$ and $\tilde{B}=B-\mu$ satisfying

$$
[A, B]=[\tilde{A}, \tilde{B}], \quad \varsigma(A, x)=\|\tilde{A} x\|_{H}, \quad \varsigma(B, x)=\|\tilde{B} x\|_{H}
$$

(iii) Check that $\left[A, B^{n}\right]$ is well-defined and prove $\left[A, B^{n}\right]=n i B^{n-1}$ for every $n \in \mathbb{N}$.
(iv) The checklist is

$$
\begin{array}{rlr}
\forall f \in D_{P}:=C_{0}^{1}([0,1] ; \mathbb{C}): \quad P f \in L^{2}([0,1] ; \mathbb{C}), & (\Rightarrow P \text { well-defined }) \\
\forall f \in D_{Q}:=L^{2}([0,1] ; \mathbb{C}): \quad Q f \in L^{2}([0,1] ; \mathbb{C}), & (\Rightarrow Q \text { well-defined }) \\
\forall f \in D_{[P, Q]}:=D_{P} \cap D_{Q}: \quad Q f \in D_{P}, & (\Rightarrow[P, Q] \text { well-defined }) \\
\forall f, g \in D_{P}: \quad\langle P f, g\rangle_{L^{2}}=\langle f, P g\rangle_{L^{2}}, & (\Rightarrow P \text { symmetric) } \\
\forall f, g \in D_{Q}: \quad\langle Q f, g\rangle_{L^{2}}=\langle f, Q g\rangle_{L^{2}}, & (\Rightarrow Q \text { symmetric) } \\
\forall f \in D_{[P, Q]}: \quad([P, Q] f)(s)=i f(s) . & \text { (Heisenberg pair) }
\end{array}
$$

