1.1. Equivalent Norms $\mathbf{a}_{\mathbf{s}}^{*}$.

Definition. Let X be a set. A metric on X is a non-negative function $d: X \times X \to \mathbb{R}$ that satisfies for all $x, y, z \in X$

$$d(x,y) = 0 \Leftrightarrow x = y, \qquad \quad d(x,y) = d(y,x), \qquad \quad d(x,z) \leq d(x,y) + d(y,z).$$

We say that two metrics d and d' on X are *equivalent* if

$$\exists C > 0 \quad \forall x_1, x_2 \in X : \quad C^{-1}d'(x_1, x_2) \le d(x_1, x_2) \le Cd'(x_1, x_2).$$

Let X be a vector space over \mathbb{R} . A norm on X is a non-negative function $\|\cdot\|: X \to \mathbb{R}$ which satisfies for all $x, y \in X$ and $\lambda \in \mathbb{R}$

 $||x|| = 0 \Leftrightarrow x = 0,$ $||\lambda x|| = |\lambda|||x||,$ $||x + y|| \le ||x|| + ||y||.$

We say that two norms $\|\cdot\|$ and $\|\cdot\|'$ on X are equivalent if

$$\exists C > 0 \quad \forall x \in X : \quad C^{-1} \|x\|' \le \|x\| \le C \|x\|'.$$

Recall that a norm $\|\cdot\|$ induces a metric $d_{\|\cdot\|}$ by the formula $d_{\|\cdot\|}(x_1, x_2) = \|x_1 - x_2\|$.

- (i) Let X be a finite-dimensional vector space over \mathbb{R} . Show that all norms on X are equivalent.
- (ii) Construct two metrics on \mathbb{R}^2 that are *not* equivalent.
- (iii) Construct a vector space X with two norms $\|\cdot\|$ and $\|\cdot\|'$ that are *not* equivalent.

Hint. Prove that $\|\cdot\|$ and $\|\cdot\|'$ are not equivalent by exhibiting a sequence $(x_n) \subset X$ that converges for $\|\cdot\|$ but not for $\|\cdot\|'$.

1.2. Intrinsic Characterisations $\boldsymbol{\alpha}_{\bullet}^{\bullet}$. Let V be a vector space over \mathbb{R} . Prove the following equivalences.

(i) The norm $\|\cdot\|$ is induced by a scalar product $\langle \cdot, \cdot \rangle$ (in the sense that there exists a scalar product $\langle \cdot, \cdot \rangle$ such that $\forall x \in V : \|x\|^2 = \langle x, x \rangle$)

 \Leftrightarrow the norm satisfies the *parallelogram identity*, i.e., $\forall x, y \in V$:

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}$$

Hint. If $\|\cdot\|$ satisfies the parallelogram identity, consider $\langle x, y \rangle := \frac{1}{4} \|x + y\|^2 - \frac{1}{4} \|x - y\|^2$. Prove $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ first for $\lambda \in \mathbb{N}$, then for $\lambda \in \mathbb{Q}$ and finally for $\lambda \in \mathbb{R}$.

- (ii) The metric $d(\cdot, \cdot)$ is induced by a norm $\|\cdot\|$ (in the sense that there exists a norm $\|\cdot\|$ such that $\forall x, y \in V : d(x, y) = \|x y\|$)
 - \Leftrightarrow the metric is translation invariant and homogeneous, i.e., $\forall v, x, y \in V \ \forall \lambda \in \mathbb{R}$:

$$d(x + v, y + v) = d(x, y),$$
$$d(\lambda x, \lambda y) = |\lambda| d(x, y).$$

1.3. When $L^p(\mathbb{R})$ and $\ell^p(\mathbb{N})$ are Hilbert spaces \square .

- (i) Determine all values of $p \in [1, \infty]$ such that the Banach space $L^p(\mathbb{R})$ is actually Hilbertean (meaning that the norm $\|\cdot\|_{L^p}$ is induced by a scalar product).
- (ii) Determine all values of $p \in [1, \infty]$ such that the Banach space $\ell^p(\mathbb{N})$ is actually Hilbertean (meaning that the norm $\|\cdot\|_{\ell^p}$ is induced by a scalar product).

It is advised not to forget the case $p = \infty$ in your discussion.

1.4. When a distance is induced by a norm \Box .

(i) Let V be a vector space over \mathbb{R} and let $d: V \times V \to \mathbb{R}$ be a distance. State necessary and sufficient conditions for $d(\cdot, \cdot)$ to be induced by a norm $\|\cdot\|$, in the sense that

$$d(v_1, v_2) = \|v_1 - v_2\| \quad \forall v_1, v_2 \in V.$$

(Note that only a statement is requested, no proof.)

(ii) Consider the vector space $C([0,\infty);\mathbb{R})$ consisting of continuous functions defined on $[0,\infty) \subset \mathbb{R}$ and attaining real values, and the distance

$$d(f_1, f_2) = \sum_{n=1}^{\infty} 2^{-n} \frac{\|f_1 - f_2\|_{C^0([0,n])}}{1 + \|f_1 - f_2\|_{C^0([0,n])}}$$

where $||f||_{C^0([0,n])} = \sup_{x \in [0,n]} |f(x)|$. Is *d* induced by a norm?

1.5. Infinite-dimensional vector spaces and separability 🕰.

- (i) Let $\emptyset \neq \Omega \subset \mathbb{R}^n$ be an open set. Show that $L^p(\Omega)$ is an infinite-dimensional vector space for all $1 \leq p \leq \infty$.
- (ii) Let (X, \mathcal{A}, μ) be a measure space. Recall that if X is separable and the measure μ is finite (or, more generally, σ -finite) and if $1 \leq p < \infty$, then the space $L^p(X, \mathcal{A}, \mu)$ is separable. Roughly speaking, in the simple case when X = (0, 1), $\mathcal{A} = \text{Borel}-\sigma$ -algebra and $\mu = \mathscr{L}^1$, this relies on the fact that any element in those spaces can be arbitrarily well approximated by a function of the form

$$f = \sum_{i=1}^{k} q_i \chi_{B_i} \quad \text{for } k \in \mathbb{N}, \ B_i := B_{r_i}(x_i), \ q_i \in \mathbb{Q}, \ x_i \in \mathbb{Q} \cap (0, 1), \ 0 < r_i \in \mathbb{Q}.$$

Show that instead $(L^{\infty}((0,1)), \|\cdot\|_{L^{\infty}((0,1))})$ is *not* separable, i.e., it does not contain a countable dense subset.

(Recall that $||u||_{L^{\infty}((0,1))} := \inf\{K > 0 \mid |u(x)| \le K \text{ for almost every } x \in (0,1)\}.$)