1.1. Equivalent Norms

Definition. Let X be a set. A metric on X is a non-negative function $d: X \times X \rightarrow \mathbb{R}$ that satisfies for all $x, y, z \in X$

$$
d(x, y)=0 \Leftrightarrow x=y, \quad d(x, y)=d(y, x), \quad d(x, z) \leq d(x, y)+d(y, z) .
$$

We say that two metrics d and d^{\prime} on X are equivalent if

$$
\exists C>0 \quad \forall x_{1}, x_{2} \in X: \quad C^{-1} d^{\prime}\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, x_{2}\right) \leq C d^{\prime}\left(x_{1}, x_{2}\right) .
$$

Let X be a vector space over \mathbb{R}. A norm on X is a non-negative function $\|\cdot\|: X \rightarrow \mathbb{R}$ which satisfies for all $x, y \in X$ and $\lambda \in \mathbb{R}$

$$
\|x\|=0 \Leftrightarrow x=0, \quad\|\lambda x\|=|\lambda|\|x\|, \quad\|x+y\| \leq\|x\|+\|y\| .
$$

We say that two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on X are equivalent if

$$
\exists C>0 \quad \forall x \in X: \quad C^{-1}\|x\|^{\prime} \leq\|x\| \leq C\|x\|^{\prime}
$$

Recall that a norm $\|\cdot\|$ induces a metric $d_{\|\cdot\|}$ by the formula $d_{\|\cdot\|}\left(x_{1}, x_{2}\right)=\left\|x_{1}-x_{2}\right\|$.
(i) Let X be a finite-dimensional vector space over \mathbb{R}. Show that all norms on X are equivalent.
(ii) Construct two metrics on \mathbb{R}^{2} that are not equivalent.
(iii) Construct a vector space X with two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ that are not equivalent. Hint. Prove that $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are not equivalent by exhibiting a sequence $\left(x_{n}\right) \subset X$ that converges for $\|\cdot\|$ but not for $\|\cdot\|^{\prime}$.
1.2. Intrinsic Characterisations . Let $^{*} V$ be a vector space over \mathbb{R}. Prove the following equivalences.
(i) The norm $\|\cdot\|$ is induced by a scalar product $\langle\cdot, \cdot\rangle$ (in the sense that there exists a scalar product $\langle\cdot, \cdot\rangle$ such that $\forall x \in V:\|x\|^{2}=\langle x, x\rangle$)
\Leftrightarrow the norm satisfies the parallelogram identity, i.e., $\forall x, y \in V$:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

Hint. If $\|\cdot\|$ satisfies the parallelogram identity, consider $\langle x, y\rangle:=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4} \| x-$ $y \|^{2}$. Prove $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$ first for $\lambda \in \mathbb{N}$, then for $\lambda \in \mathbb{Q}$ and finally for $\lambda \in \mathbb{R}$.
(ii) The metric $d(\cdot, \cdot)$ is induced by a norm $\|\cdot\|$ (in the sense that there exists a norm $\|\cdot\|$ such that $\forall x, y \in V: d(x, y)=\|x-y\|)$
\Leftrightarrow the metric is translation invariant and homogeneous, i.e., $\forall v, x, y \in V \forall \lambda \in \mathbb{R}$:

$$
\begin{aligned}
d(x+v, y+v) & =d(x, y), \\
d(\lambda x, \lambda y) & =|\lambda| d(x, y) .
\end{aligned}
$$

1.3. When $L^{p}(\mathbb{R})$ and $\ell^{p}(\mathbb{N})$ are Hilbert spaces \square_{\square}.

(i) Determine all values of $p \in[1, \infty]$ such that the Banach space $L^{p}(\mathbb{R})$ is actually Hilbertean (meaning that the norm $\|\cdot\|_{L^{p}}$ is induced by a scalar product).
(ii) Determine all values of $p \in[1, \infty]$ such that the Banach space $\ell^{p}(\mathbb{N})$ is actually Hilbertean (meaning that the norm $\|\cdot\|_{e^{p}}$ is induced by a scalar product).

It is advised not to forget the case $p=\infty$ in your discussion.

1.4. When a distance is induced by a norm

(i) Let V be a vector space over \mathbb{R} and let $d: V \times V \rightarrow \mathbb{R}$ be a distance. State necessary and sufficient conditions for $d(\cdot, \cdot)$ to be induced by a norm $\|\cdot\|$, in the sense that

$$
d\left(v_{1}, v_{2}\right)=\left\|v_{1}-v_{2}\right\| \quad \forall v_{1}, v_{2} \in V .
$$

(Note that only a statement is requested, no proof.)
(ii) Consider the vector space $C([0, \infty) ; \mathbb{R})$ consisting of continuous functions defined on $[0, \infty) \subset \mathbb{R}$ and attaining real values, and the distance

$$
d\left(f_{1}, f_{2}\right)=\sum_{n=1}^{\infty} 2^{-n} \frac{\left\|f_{1}-f_{2}\right\|_{C^{0}([0, n])}}{1+\left\|f_{1}-f_{2}\right\|_{C^{0}([0, n])}}
$$

where $\|f\|_{C^{0}([0, n])}=\sup _{x \in[0, n]}|f(x)|$. Is d induced by a norm?

1.5. Infinite-dimensional vector spaces and separability

(i) Let $\emptyset \neq \Omega \subset \mathbb{R}^{n}$ be an open set. Show that $L^{p}(\Omega)$ is an infinite-dimensional vector space for all $1 \leq p \leq \infty$.
(ii) Let (X, \mathcal{A}, μ) be a measure space. Recall that if X is separable and the measure μ is finite (or, more generally, σ-finite) and if $1 \leq p<\infty$, then the space $L^{p}(X, \mathcal{A}, \mu)$ is separable. Roughly speaking, in the simple case when $X=(0,1), \mathcal{A}=$ Borel- σ algebra and $\mu=\mathscr{L}^{1}$, this relies on the fact that any element in those spaces can be arbitrarily well approximated by a function of the form

$$
f=\sum_{i=1}^{k} q_{i} \chi_{B_{i}} \quad \text { for } k \in \mathbb{N}, B_{i}:=B_{r_{i}}\left(x_{i}\right), q_{i} \in \mathbb{Q}, x_{i} \in \mathbb{Q} \cap(0,1), 0<r_{i} \in \mathbb{Q} .
$$

Show that instead $\left(L^{\infty}((0,1)),\|\cdot\|_{L^{\infty}((0,1))}\right)$ is not separable, i.e., it does not contain a countable dense subset.
(Recall that $\|u\|_{L^{\infty}((0,1))}:=\inf \{K>0| | u(x) \mid \leq K$ for almost every $x \in(0,1)\}$.)

