2.1. Statements of Baire 🖉.

Definition. Let (M, d) be a metric space and consider a subset $A \subset M$. Then, \overline{A} denotes the closure, A° the interior and $A^{\complement} = M \setminus A$ the complement of A. We say that A is

- dense, if $\overline{A} = X$;
- nowhere dense, if $(\overline{A})^{\circ} = \emptyset$;
- meagre, if $A = \bigcup_{n \in \mathbb{N}} A_n$ is a countable union of nowhere dense sets A_n ;
- residual, if A^{\complement} is meagre.

Show that the following statements are equivalent.

- (i) Every residual set $\Omega \subset M$ is dense in M.
- (ii) The interior of every meagre set $A \subset M$ is empty.
- (iii) The empty set is the only subset of M that is open and meagre.
- (iv) Countable intersections of dense open sets are dense.

Hint. Show (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i). Use that subsets of meagre sets are meagre and recall that $A \subset M$ is dense $\Leftrightarrow \overline{A} = M \Leftrightarrow (M \setminus A)^{\circ} = \emptyset$.

Remark. Baire's theorem states that (i), (ii), (ii), (iv) are true if (M, d) is complete.

2.2. Quick warm-up: true or false? **C**. Decide whether the following statements are true or false. If true, think of a quick proof. If false, find a simple counterexample. *(self-check: not to be handed in.)*

- (i) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of continuous functions $f_n \in C^0([0,1])$. If there exists $f: [0,1] \to \mathbb{R}$ such that $\forall x \in [0,1] : \lim_{n \to \infty} f_n(x) = f(x)$ then $f \in C^0([0,1])$.
- (ii) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of continuous functions $f_n \in C^0([0,1])$. If $\forall x \in [0,1]$ $\exists C(x) : \sup_{n\in\mathbb{N}} |f_n(x)| \le C(x)$ then $\sup_{n\in\mathbb{N}} \sup_{x\in[0,1]} |f_n(x)| < \infty$.
- (iii) The function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ given by $d(x, y) = \min\{|x_1 x_2|, |y_1 y_2|\}$, where $x = (x_1, x_2)$ and $y = (y_1, y_2)$, is a distance.
- (iv) There exists $A \subset \mathbb{R}$ such that both A and its complement A^{\complement} are dense in \mathbb{R} .
- (v) $(C^1([-1,1]), \|\cdot\|_{C^0})$ is a Banach space, i.e., a complete normed space.
- (vi) The complement of a 2nd category set is a 1st category set.
- (vii) A nowhere dense set is meagre.
- (viii) A meagre set is nowhere dense.

(ix) Let U be the set of fattened rationals in \mathbb{R} , namely

$$U := \bigcap_{j=1}^{\infty} U_j, \qquad \qquad U_j := \bigcup_{k=1}^{\infty} \left(q_k - 2^{-(j+k+1)}, q_k + 2^{-(j+k+1)} \right),$$

where $(q_n)_{n \in \mathbb{N}}$ is a counting of \mathbb{Q} . Then $U = \mathbb{Q}$.

2.3. An application of Baire $\mathbf{a}_{\mathbf{a}}^{\mathbf{a}}$. Let $f \in C^0([0,\infty))$ be a continuous function satisfying

$$\forall t \in [0, \infty) : \lim_{n \to \infty} f(nt) = 0.$$

Prove that $\lim_{t \to \infty} f(t) = 0.$

Hint. Apply the Baire Lemma as in the proof of the uniform boundedness principle.

2.4. Compactly supported sequences and their ℓ^{∞} -completion $\boldsymbol{\mathfrak{C}}$.

Definition. We denote the space of compactly supported sequences by

$$c_c := \{ (x_n)_{n \in \mathbb{N}} \in \ell^\infty \mid \exists N \in \mathbb{N} \ \forall n \ge N : \ x_n = 0 \}$$

and the space of sequences converging to zero by

$$c_0 := \{ (x_n)_{n \in \mathbb{N}} \in \ell^\infty \mid \lim_{n \to \infty} x_n = 0 \}.$$

- (i) Show that $(c_c, \|\cdot\|_{\ell^{\infty}})$ is not complete. What is the completion of this space?
- (ii) Prove the strict inclusion

$$\bigcup_{p\geq 1}\ell^p \subsetneq c_0$$

Let (X, d) be a metric space, and let (f_n) be a sequence of continuous, real-valued functions $f_n: X \to \mathbb{R}$ assumed to be pointwise converging to a limit function f, i.e., we set

$$f(x) = \lim_{n \to \infty} f_n(x).$$

In this problem we wish to study the set of continuity points of the function f, namely the structure of the set $C := \{x \in X \mid f \text{ is continuous at } x\}$.

- (i) Give an example of a space X and a sequence of continuous functions whose pointwise limit (although well-defined) is *not* continuous.
- (ii) Assuming that (X, d) is complete, prove that C is residual and dense.

Hint. For every $\varepsilon > 0$, define $D_{\varepsilon} := \{x \in X \mid \operatorname{osc}_x(f) \ge \varepsilon\}$, where $\operatorname{osc}_x(f) := \lim_{r \to 0} \{\sup_{y \in B_r(x)} f(y) - \inf_{y \in B_r(x)} f(y)\}$ is the oscillation of f at x, and set $D := \bigcup_{j \ge 1} D_{1/j}$. Show that: (a) D is the set of discontinuity points of f, i.e. $D^{\complement} = C$, and (b) $D_{\varepsilon}^{\complement}$ is open and dense for all $\varepsilon > 0$. Hence conclude by applying Baire's Lemma.

(iii) Show that the Dirichlet function $f = \chi_{\mathbb{Q}}$ is not the pointwise limit of any sequence of continuous functions on the real line.