5.1. Quotient of a Hilbert space \mathcal{C} . Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbb{C} and let $Y \subset X$ be a closed subspace. Prove that the quotient X/Y is isometric to the orthogonal Y^{\perp} of Y.

5.2. Isomorphic proper subspaces \mathfrak{C} . Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space over \mathbb{C} endowed with a countable Hilbertian basis $\{e_i\}_{i>1}$.

- (i) For all $k \ge 1$, consider the subspace $E_k \subset X$ generated by $e_1, e_3, \ldots, e_{2k-1}$, namely $E_k := \langle e_1, e_3, \ldots, e_{2k-1} \rangle_{\mathbb{C}}$ and define $Y := \bigcup_{k>1} E_k$. Is Y closed?
- (ii) Construct a proper subspace $Z \subsetneq X$ such that there exists an isomorphism $T: Z \to X$ of Banach spaces.

5.3. Odd and even functions $\overset{\bullet}{a}$. Consider the Hilbert space $H = L^2((-1,1);\mathbb{R})$ and define the subset of odd functions $D := \{f \in H \mid f(-x) = -f(x) \text{ for a.e. } x \in (-1,1)\}$ and the subset of even functions $P := \{f \in H \mid f(-x) = f(x) \text{ for a.e. } x \in (-1,1)\}$.

- (i) Prove that D and P are closed subspaces of H.
- (ii) Prove that $H = D \oplus P$ and $D \perp P$. Hence deduce that $D^{\perp} = P$ and $P^{\perp} = D$.
- (iii) Compute the orthogonal projections $\pi_D \colon H \to D$ and $\pi_P \colon H \to P$.
- (iv) Find a Hilbertian basis for both D and P.

5.4. Notable series \blacksquare . Specifying Parseval's identity to f(x) = x (seen as an element of $L^2((-\pi, \pi); \mathbb{R})$) show that

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

5.5. Closed sum of subspaces \mathbb{Z} . Let $(X, \|\cdot\|_X)$ be a normed space an let $U, V \subset X$ be subspaces. Prove the following.

- (i) If U is finite dimensional and V closed, then U + V is a closed subspace of X.
- (ii) If V is closed with finite codimension, i.e., $\dim(X/V) < \infty$, then U + V is closed.

Hint. Is the canonical quotient map $\pi: X \to X/V$ continuous? What is $\pi^{-1}(\pi(U))$?

5.6. Vanishing boundary values **C**. Let $X = C^0([0,1])$ and $U = C_0^0([0,1]) := \{f \in C^0([0,1]) \mid f(0) = 0 = f(1)\}.$

- (i) Show that U is a closed subspace of X endowed with the norm $\|\cdot\|_X = \|\cdot\|_{C^0([0,1])}$.
- (ii) Compute the dimension of the quotient space X/U and find a basis for X/U.