6.1. 1D "closed graph theorem" for continuous functions \mathfrak{C} . Let $f : \mathbb{R} \to \mathbb{R}$ be bounded and let $\Gamma = \{(x, y) \in \mathbb{R}^2 \mid y = f(x)\} \subset \mathbb{R}^2$ be its graph. Show that f is continuous if and only if Γ is closed. (Achtung: the point here is that we are not restricting to linear maps.)

Is the same statement true if f is *not* assumed to be bounded?

6.2. Closed range \mathfrak{C} . Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Let $A: D_A \subset X \to Y$ be a linear operator with closed graph. Show that the following statements are equivalent.

- (i) A is injective and its range $W_A := A(D_A)$ is closed in $(Y, \|\cdot\|_Y)$.
- (ii) $\exists C > 0 \quad \forall x \in D_A : \quad ||x||_X \leq C ||Ax||_Y.$

Hint. One implication follows from the Inverse Mapping Theorem.

6.3. An implication of Hellinger–Töplitz (coercive operators) \square . Let $(H, (\cdot, \cdot))$ be a Hilbert space and let $A: H \to H$ be a symmetric linear operator such that

 $\exists \lambda > 0 \quad \forall x \in H: \quad (Ax, x) \ge \lambda \|x\|^2.$

(Any linear operator satisfying such an inequality is called *coercive*.) Show that A is an isomorphism of normed spaces and $||A^{-1}|| \leq \lambda^{-1}$.

6.4. Graph norm 📽.

(i) Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and let $A: D_A \subset X \to Y$ be a linear operator with graph $\Gamma_A \subset X \times Y$. Then, $\|x\|_{\Gamma_A} := \|x\|_X + \|Ax\|_Y$ defined on D_A is called the graph norm.

Show that if A has closed graph, then $(D_A, \|\cdot\|_{\Gamma_A})$ is a Banach space.

(ii) Let $(X_0, \|\cdot\|_{X_0})$, $(X_1, \|\cdot\|_{X_1})$ and $(X_2, \|\cdot\|_{X_2})$ be Banach spaces and let

$$T_1: D_1 \subset X_0 \to X_1,$$
$$T_2: D_2 \subset X_0 \to X_2$$

be linear operators with closed graphs such that $D_1 \subset D_2$. Prove that

$$\exists C > 0 \quad \forall x \in D_1: \quad \|T_2 x\|_{X_2} \le C \Big(\|T_1 x\|_{X_1} + \|x\|_{X_0} \Big).$$

6.5. Closed sum $\overset{\bullet}{\mathbf{x}}$. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and let

$$A: D_A \subset X \to Y,$$
$$B: D_B \subset X \to Y$$

be linear operators with $D_A \subset D_B$. Under the assumption that there exist constants $0 \le a < 1$ and $b \ge 0$ such that

$$\forall x \in D_A: \quad \|Bx\|_Y \le a\|Ax\|_Y + b\|x\|_X,$$

show that if A has closed graph, then $(A + B): D_A \to Y$ has closed graph.

Hint. Given a sequence $(x_n)_{n \in \mathbb{N}}$ in D_A , prove the estimate

$$(1-a)||A(x_n - x_m)|| \le ||(A+B)(x_n - x_m)|| + b||x_n - x_m||.$$

6.6. Derivative operator $\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}}$. Let $X = L^2([0,1])$. On $D_A := C_c^{\infty}((0,1)) \subset X$ we define the derivative operator

$$A\colon D_A \to X$$
$$f \mapsto f'.$$

Recall that A is closable. Show that the domain $D_{\overline{A}}$ of its closure is contained in

$$\{f \in C^0([0,1]) \mid f(0) = 0 = f(1)\}.$$

Hint. Given $f \in D_{\overline{A}}$ consider a sequence $(f_n)_{n \in \mathbb{N}}$ in D_A which converges to f in X. Achtung, L^2 -convergence does not imply pointwise convergence: You cannot evaluate f at points. Instead, compare $f_n(t)$ to $g(t) := \int_0^t \overline{A} f \, dx$.

6.7. Closable inverse \mathbb{Z} . Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Let $A: D_A \subset X \to Y$ be a closable linear operator. Assume that its closure \overline{A} is injective. Show that the inverse operator A^{-1} is closable and $\overline{A^{-1}} = (\overline{A})^{-1}$.

Hint. Consider the image of the graph of A under the map

$$\chi \colon X \times Y \to Y \times X$$
$$(x, y) \mapsto (y, x).$$

6.8. Derivative operator on different spaces 🗹. For the Banach spaces

- (i) $X = Y = C^0([0, 1])$ with norm $\|\cdot\|_{C^0([0, 1])}$
- (ii) $X = Y = L^2([0, 1])$ with norm $\|\cdot\|_{L^2([0, 1])}$

of functions $f: [0,1] \to \mathbb{R}, t \mapsto f(t)$, we consider the linear operator

$$\frac{\mathrm{d}}{\mathrm{d}t} \colon C^1([0,1]) \subset X \to Y.$$

In both cases, discuss whether this operator is bounded and whether it is closable.

Remark. Given normed spaces X and Y, a linear map $A: X \to Y$ is continuous or, equivalently, bounded if it satisfies one (hence all) of the conditions given in Satz 2.2.1.