8.1. Duality of sequence spaces . Consider the spaces

$$c_0 := \left\{ (x_k)_{k \in \mathbb{N}} \in \ell^{\infty} \mid \lim_{k \to \infty} x_k = 0 \right\}, \qquad c := \left\{ (x_k)_{k \in \mathbb{N}} \in \ell^{\infty} \mid \lim_{k \to \infty} x_k \text{ exists} \right\}.$$

- (i) Quick warm-up: Is $(c_0, \|\cdot\|_{\ell^{\infty}})$ a Banach space? Is $(c, \|\cdot\|_{\ell^{\infty}})$ a Banach space?
- (ii) Show that the dual space of $(c_0, \|\cdot\|_{\ell^{\infty}})$ is isometrically isomorphic to $(\ell^1, \|\cdot\|_{\ell^1})$.
- (iii) To which space is the dual space of $(c, \|\cdot\|_{\ell^{\infty}})$ isomorphic?
- **8.2.** A result by Lions-Stampacchia \bigoplus : \bigoplus . Let $(H, (\cdot, \cdot)_H)$ be a Hilbert space and let $\emptyset \neq K \subset H$ be a closed, convex subset. Let $f: H \to \mathbb{R}$ be a continuous linear functional and let $a: H \times H \to \mathbb{R}$ be a bilinear map satisfying
 - (i) $\forall x, y \in H$: a(x, y) = a(y, x)
 - (ii) $\exists \Lambda > 0 \quad \forall x, y \in H : \quad |a(x,y)| \le \Lambda ||x||_H ||y||_H$
- (iii) $\exists \lambda > 0$ $\forall x \in H : a(x,x) \ge \lambda ||x||_H^2$.

Consider the functional $J: H \to \mathbb{R}$ given by J(x) = a(x, x) - 2f(x) and prove that there exists a unique $y_0 \in K$ such that the two following inequalities both hold:

$$\forall y \in K : J(y_0) \le J(y),$$

 $\forall y \in K : a(y_0, y - y_0) \ge f(y - y_0).$

Moreover show that y_0 is equal to Px_0 , where $x_0 \in H$ is such that $f(x) = a(x_0, x)$ and $P: H \to K$ is the operator mapping $x \in H$ to the unique point $Px \in K$ with $||x - Px||_H = \text{dist}(x, K)$ (see Problem 7.6 (ii)).

- **8.3. Projection to convex sets** Let $(H, (\cdot, \cdot)_H)$ be a Hilbert space and let $\emptyset \neq K \subset H$ be a closed, convex subset. Let $P: H \to K$ be the operator which maps $x \in H$ to the unique point $Px \in K$ with $||x Px||_H = \text{dist}(x, K)$ (see Problem 7.6 (ii)).
 - (i) For every $x_1, x_2 \in H$ prove the inequality

$$||Px_1 - Px_2||_H \le ||x_1 - x_2||_H.$$

Hint. Use Problem 8.2.

(ii) Prove that

$$K = \bigcap_{x \in H} \{ y \in H \mid (Px - x, y - Px)_H \ge 0 \}.$$

8.4. Strict convexity **2**.

Definition. A normed space $(X, \|\cdot\|_X)$ is called *strictly convex* if $\|\lambda x + (1-\lambda)y\|_X < 1$ holds for all $0 < \lambda < 1$ and all $x, y \in X$ with $x \neq y$ and $\|x\|_X = 1 = \|y\|_X$.

Let $(X, \|\cdot\|_X)$ be a normed space. The "abundance"-Lemma (Satz 4.2.1) states that

$$\forall x \in X \quad \exists x^* \in X^* : \quad \|x^*\|_{X^*}^2 = x^*(x) = \|x\|_X^2.$$

- (i) Prove that if X^* (but not necessarily X) is strictly convex, then for all $x \in X$ there exists a unique $x^* \in X^*$ with $||x^*||_{X^*}^2 = x^*(x) = ||x||_X^2$.
- (ii) Find a counterexample for uniqueness of such x^* , if X^* is not strictly convex.

8.5. Uniform convexity 2.

Definition. Let $(X, \|\cdot\|_X)$ be a Banach space and let $S = \{x \in X \mid \|x\|_X = 1\}$ be the unit sphere in X. The space $(X, \|\cdot\|_X)$ is called uniformly convex if

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in S: \quad \|x - y\|_X > \varepsilon \implies \left\| \frac{x + y}{2} \right\|_X < 1 - \delta.$$

Remark. Uniform convexity is not to be confused with *strict convexity* defined in Problem 8.4.

- (i) Prove that Hilbert spaces are uniformly convex.
- (ii) Provide an example of a Banach space which is not uniformly convex.
- **8.6. Functional on the span of a sequence** G. Let $(X, \|\cdot\|_X)$ be a normed space, let $(x_k)_{k\in\mathbb{N}}$ be a sequence in X and $(\alpha_k)_{k\in\mathbb{N}}$ a sequence in \mathbb{R} . Prove that the following statements are equivalent.
 - (i) There exists $\ell \in X^*$ satisfying $\ell(x_k) = \alpha_k$ for every $k \in \mathbb{N}$.
 - (ii) There exists $\gamma > 0$ such that for every sequence $(\beta_k)_{k \in \mathbb{N}}$ in \mathbb{R} and every $n \in \mathbb{N}$ it holds

$$\left| \sum_{k=1}^{n} \beta_k \alpha_k \right| \le \gamma \left\| \sum_{k=1}^{n} \beta_k x_k \right\|_X.$$