9.1. Representation of a convex set . *. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let $\emptyset \neq Q \subset X$ be an open, convex subset containing the origin. Prove that there exists a subset $\Upsilon \subset X^{*}$ such that

$$
Q=\bigcap_{f \in \Upsilon}\{x \in X \mid f(x)<1\},
$$

which means that Q is an intersection of open, affine half-spaces.

9.2. Extremal subsets

Definition. Let X be a vector space and $K \subset X$ any subset. A subset $M \subset K$ is called extremal subset of K if

$$
\forall x_{1}, x_{0} \in K \quad \forall \lambda \in(0,1): \quad\left(\lambda x_{1}+(1-\lambda) x_{0} \in M \Rightarrow x_{1}, x_{0} \in M\right)
$$

If M consists of only one point $M=\{y\}$, we say that y is an extremal point of K.
Let X be vector space and let $K \subset X$ be a convex subset with more than one element.
(i) Assume $K \subset \mathbb{R}^{2}$ is also closed. Prove that the set E of all extremal points of K is closed.
(ii) Is the statement of (i) also true in \mathbb{R}^{3} ?
(iii) Given an extremal subset $M \subset K$ of K, prove that $K \backslash M$ is convex.
(iv) Prove that $y \in K$ is an extremal point of K if and only if $K \backslash\{y\}$ is convex.
(v) If $N \subset K$ and $K \backslash N$ are both convex, does it follow that N is extremal?
9.3. Weak sequential continuity of linear operators \mathbb{Q}. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces and let $T: X \rightarrow Y$ be a linear operator. Prove that the following statements are equivalent.
(i) T is continuous.
(ii) For every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X, weak convergence $x_{n} \xrightarrow{\mathrm{w}} x$ in X for $n \rightarrow \infty$ implies weak convergence $T x_{n} \xrightarrow{\mathrm{w}} T x$ in Y for $n \rightarrow \infty$.
9.4. Weak convergence in finite dimensions . Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space of finite dimension $\operatorname{dim} X=d<\infty$. Let $x \in X$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. Prove that weak convergence $x_{n} \stackrel{\mathrm{w}}{\longrightarrow} x$ for $n \rightarrow \infty$ implies $\left\|x_{n}-x\right\|_{X} \rightarrow 0$ for $n \rightarrow \infty$.
9.5. Weak convergence in Hilbert spaces Let $\left(H,(\cdot, \cdot)_{H}\right)$ be a real, infinite dimensional Hilbert space. Let $x \in H$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in H.
(i) Prove that weak convergence $x_{n} \xrightarrow{\mathrm{w}} x$ in H and convergence of the norms $\left\|x_{n}\right\|_{H} \rightarrow$ $\|x\|_{H}$ in \mathbb{R} implies (strong) convergence $x_{n} \rightarrow x$ in H, i. e. $\left\|x_{n}-x\right\|_{H} \rightarrow 0$.
(ii) Suppose $x_{n} \xrightarrow{\mathbf{w}} x$ and $\left\|y_{n}-y\right\|_{H} \rightarrow 0$, where $\left(y_{n}\right)_{n \in \mathbb{N}}$ is another sequence in H and $y \in H$. Prove that $\left(x_{n}, y_{n}\right)_{H} \rightarrow(x, y)_{H}$.
(iii) Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal system of $\left(H,(\cdot, \cdot)_{H}\right)$. Prove $e_{n} \xrightarrow{\mathbf{w}} 0$ as $n \rightarrow \infty$.
(iv) Given any $x \in H$ with $\|x\|_{H} \leq 1$, prove that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in H satisfying $\left\|x_{n}\right\|_{H}=1$ for all $n \in \mathbb{N}$ and $x_{n} \stackrel{\mathrm{w}}{ } \quad x$ as $n \rightarrow \infty$.
(v) Let the functions $f_{n}:[0,2 \pi] \rightarrow \mathbb{R}$ be given by $f_{n}(t)=\sin (n t)$ for $n \in \mathbb{N}$. Prove that $f_{n} \xrightarrow{\mathrm{w}} 0$ in $L^{2}([0,2 \pi])$ as $n \rightarrow \infty$.
9.6. Sequential closure . Let X be a set and τ a topology on X. Given a subset $\Omega \subset X$, we use the notation

$$
\bar{\Omega}_{\tau}:=\bigcap_{\substack{A \supset \Omega, X \backslash A \in \tau}} A
$$

for the closure of Ω in the topology τ and

$$
\bar{\Omega}_{\tau-\text { seq }}:=\left\{x \in X \mid \exists\left(x_{n}\right)_{n \in \mathbb{N}} \text { in } \Omega: x_{n} \xrightarrow{\tau} x \text { as } n \rightarrow \infty\right\}
$$

for the sequential closure of Ω induced by the topology τ, which is based on the notion of convergence in topological spaces:

$$
\left(x_{n} \xrightarrow{\tau} x\right) \quad \Leftrightarrow \quad\left(\forall U \in \tau, x \in U \quad \exists N \in \mathbb{N} \quad \forall n \geq N: \quad x_{n} \in U\right) .
$$

(i) Prove that if $A \subset X$ is closed, then A is sequentially closed. Deduce the inclusion $\bar{\Omega}_{\tau \text {-seq }} \subset \bar{\Omega}_{\tau}$ for any subset $\Omega \subset X$.
(ii) Let $(X, \tau)=\left(\ell^{2}, \tau_{\mathrm{w}}\right)$, where τ_{w} denotes the weak topology on ℓ^{2}. Find a set $\Omega \subset \ell^{2}$ for which the inclusion $\bar{\Omega}_{\mathrm{w}-\text { seq }} \subset \bar{\Omega}_{\mathrm{w}}$ proven in (i) is strict.

9.7. Convex hull ${ }^{\text {中 }}$.

Definition. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. The convex hull of $A \subset X$ is defined as

$$
\operatorname{conv}(A):=\bigcap_{\substack{B \supset A, B \text { convex }}} B
$$

Recall the following representation theorem for convex hulls

$$
\operatorname{conv}(A)=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k} \mid n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{k=1}^{n} \lambda_{k}=1\right\}
$$

(i) Using the representation of the convex hull above, prove Mazur's Lemma: If $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a sequence in X satisfying $x_{k} \xrightarrow{\mathbf{W}} x$ as $k \rightarrow \infty$, then there exists a sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of convex linear combinations

$$
y_{n}=\sum_{k=1}^{c(n)} a_{k n} x_{k}, \quad c(n) \in \mathbb{N}, \quad a_{k n} \geq 0 \text { for } k=1, \ldots, c(n), \quad \sum_{k=1}^{c(n)} a_{k n}=1,
$$

such that $\left\|y_{n}-x\right\|_{X} \rightarrow 0$ as $n \rightarrow \infty$.
(ii) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let $A, B \subset X$ be compact, convex subsets. Using the representation of the convex hull above, prove that $\operatorname{conv}(A \cup B)$ is compact.

