

Definition. Let (X, τ) be a topological space. Denoting the set of all neighbourhoods of a point $x \in X$ by

$$\mathcal{U}_x = \{ U \subset X \mid \exists O \in \tau : x \in O \subset U \},\$$

we say that $\mathcal{B}_x \subset \mathcal{U}_x$ is a *neighbourhood basis* of x in (X, τ) if $\forall U \in \mathcal{U}_x \exists V \in \mathcal{B}_x : V \subset U$.

Definition. A topological space (X, τ) is called *metrizable* if there exists a metric (namely a distance function) $d: X \times X \to \mathbb{R}$ on X (as defined in Problem 1.1) such that, denoting $B_{\varepsilon}(x) = \{y \in X \mid d(x, y) < \varepsilon\}$, there holds

$$\tau = \{ O \subset X \mid \forall x \in O \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset O \} \}.$$

(i) Show that any metrizable topology τ satisfies the *first axiom of countability* which means that each point has a *countable* neighbourhood basis.

From now on, let us assume that $(X, \|\cdot\|_X)$ is a normed space and τ_w denotes the weak topology on X.

(ii) Prove that

$$\mathcal{B} := \left\{ \bigcap_{k=1}^{n} f_{k}^{-1} \big((-\varepsilon, \varepsilon) \big) \ \middle| \ n \in \mathbb{N}, \ f_{1}, \dots, f_{n} \in X^{*}, \ \varepsilon > 0 \right\}$$

is a neighbourhood basis of $0 \in X$ in (X, τ_w) .

(iii) Prove the following lemma: Let $f_1, \ldots, f_n \in X^*$ and $f \in X^*$ be given. Let

 $N := \{ x \in X \mid f_1(x) = \ldots = f_n(x) = 0 \}.$

Then f(x) = 0 for every $x \in N$ if and only if $f = \lambda_1 f_1 + \ldots + \lambda_n f_n$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

- (iv) Using (ii) and (iii), show that if (X, τ_w) is first countable, then $(X^*, \|\cdot\|_{X^*})$ admits a countable algebraic basis.
- (v) Assume that the normed space $(X, \|\cdot\|_X)$ is infinite dimensional and conclude from (i) and (iv) (recalling also that any algebraic basis of a Banach space is either finite or uncountable) that the topological space (X, τ_w) is not metrizable.

10.2. Non-compactness **A**. In each of the Banach spaces below, find a sequence which is bounded but does not have a convergent subsequence.

- (i) $(L^p([0,1]), \|\cdot\|_{L^p([0,1])})$ for $1 \le p \le \infty$.
- (ii) $(c_0, \|\cdot\|_{\ell^{\infty}})$ where $c_0 \subset \ell^{\infty}$ is the space of sequences converging to zero.

10.3. Separability \mathfrak{C} . Let $(X, \|\cdot\|_X)$ be a normed space. Prove that the following statements are equivalent.

- (i) The normed space $(X, \|\cdot\|_X)$ is separable.
- (ii) $B = \{x \in X \mid ||x||_X \le 1\}$ is separable.
- (iii) $S = \{x \in X \mid ||x||_X = 1\}$ is separable.

10.4. Quadratic functional on a reflexive space \Box . Let $(X, \|\cdot\|_X)$ be a reflexive Banach space over \mathbb{R} . Given a positive integer n, consider n pairwise distinct points x_1, \ldots, x_n in X and the functional

$$F: X \to \mathbb{R}, \qquad \qquad F(x) = \sum_{i=1}^n ||x - x_i||_X^2.$$

- (i) Prove that the functional F has a global minimum on X, namely the value $\inf_{x \in X} F(x)$ is a real number attained by F at some $\overline{x} \in X$.
- (ii) Let us now assume that $(X, \|\cdot\|_X)$ is a Hilbert space (thus $\|\cdot\|_X$ is induced by a scalar product $\langle \cdot, \cdot \rangle_X$). Prove that the minimum $\overline{x} \in X$ is unique, and that \overline{x} belongs to the convex hull K of $\{x_1, \ldots, x_n\}$.

10.5. A class of functionals on a reflexive space \square . Let $(X, \|\cdot\|_X)$ be a reflexive Banach space over \mathbb{R} . Let $\ell \in X^*$ and for any given real number $\alpha \ge 0$ consider the functional $F_{\alpha} \colon X \to \mathbb{R}$ given by

$$F_{\alpha}(x) = \|x\|_X^2 - |\ell(x)|^{\alpha}.$$

Prove that there exists $\alpha_0 > 0$ (to be explicitly determined) such that:

- (i) For any $0 \le \alpha < \alpha_0$ the functional F_{α} has a global minimum on X, namely the value $\inf_{x \in X} F_{\alpha}(x)$ is a real number attained by F_{α} at some (not necessarily unique) $\overline{x} \in X$.
- (ii) For any $\alpha > \alpha_0$ there exist examples of reflexive Banach spaces $(X, \|\cdot\|_X)$ and linear functionals $\ell \in X^*$ such that one has instead $\inf_{x \in X} F_{\alpha}(x) = -\infty$.