12.1. Uniform subconvergence \mathbb{E}. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $C^{1}([0,1])$ satisfying the following two properties.

$$
\begin{array}{lll}
& \forall n \in \mathbb{N}: \quad & f_{n}(0)=f_{n}^{\prime}(0), \\
\exists C>0 \quad \forall x \in[0,1] \quad \forall n \in \mathbb{N}: \quad & \left|f_{n}^{\prime}(x)\right| \leq C .
\end{array}
$$

Show that $\left(f_{n}\right)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence.
12.2. Sequence with bounded Hölder norm [\square. Let $0<\alpha \leq 1$ and let $\Omega \subseteq \mathbb{R}^{n}$ be an open, bounded subset. For continuous functions $\varphi: \Omega \rightarrow \mathbb{R}$, consider the so-called Hölder norm

$$
\|\varphi\|_{C^{0, \alpha}(\Omega)}=\|\varphi\|_{L^{\infty}(\Omega)}+\sup _{\substack{x, y \in \Omega, x \neq y}} \frac{|\varphi(x)-\varphi(y)|}{|x-y|^{\alpha}}
$$

and the corresponding normed space

$$
C^{0, \alpha}(\bar{\Omega}, \mathbb{R})=\left\{\varphi \in C^{0}(\bar{\Omega}, \mathbb{R}) \mid\|\varphi\|_{C^{0, \alpha}(\Omega)}<\infty\right\}
$$

(i) Prove that a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \subset C^{0, \alpha}(\bar{\Omega}, \mathbb{R})$ which is bounded with respect to the Hölder norm has a uniformly convergent subsequence.

Now let $X=L^{2}((0,1), \mathbb{R})$ and let $T: X \rightarrow X$ be given by $T(f)(x)=\int_{0}^{x} f(y) \mathrm{d} y$.
(ii) Prove that $T(X) \subset C^{0,1 / 2}((0,1), \mathbb{R})$.
(iii) Use (i) to prove that T is a compact operator from X to $Y=C^{0}((0,1), \mathbb{R})$.
12.3. Multiplication operators on complex-valued sequences $\boldsymbol{q}_{\mathbf{k}}$. Let $\ell_{\mathbb{C}}^{p}$ denote the space of \mathbb{C}-valued sequences of summable p-th power, namely

$$
\ell_{\mathbb{C}}^{p}:=\left\{\left.\begin{array}{r}
x: \mathbb{N} \rightarrow \mathbb{C} \\
n \mapsto x_{n}
\end{array}\left|\sum_{n \in \mathbb{N}}\right| x_{n}\right|^{p}<\infty\right\}
$$

endowed with its standard Banach norm $\|\cdot\|_{\ell_{\mathbb{C}}^{p}}$. Given $a \in \ell_{\mathbb{C}}^{\infty}$ we define the operator $T: \ell_{\mathbb{C}}^{2} \rightarrow \ell_{\mathbb{C}}^{2}$ by $(T x)_{n}=a_{n} x_{n}$.
(i) Prove that $T \in L\left(\ell_{\mathbb{C}}^{2}, \ell_{\mathbb{C}}^{2}\right)$ and compute its operator norm.
(ii) Prove that T is self-adjoint if and only if $a_{n} \in \mathbb{R}$ for all $n \in \mathbb{N}$.
(iii) Prove that T is compact if and only if $\lim _{n \rightarrow \infty} a_{n}=0$.
12.4. A compact operator on continuous functions 曲. Given $a<b$, let $T: C^{0}([a, b]) \rightarrow$ $C^{0}([a, b])$ be the linear operator defined by

$$
(T f)(x)=\int_{a}^{x} \frac{f(t)}{\sqrt{x-t}} \mathrm{~d} t
$$

(i) Check that T is continuous and compute its operator norm $\|T\|$.
(ii) Prove that T is a compact operator.
(iii) Check that the spectral radius r_{T} of T can be estimated by $r_{T} \leq 2 \sqrt{b-a}$.
12.5. A multiplication operator on square-integrable functions 罝. Given $-\infty<$ $a \leq 0 \leq b<\infty$, let $T: L^{2}([a, b] ; \mathbb{C}) \rightarrow L^{2}([a, b] ; \mathbb{C})$ be the linear operator defined by

$$
(T f)(x)=x^{2} f(x)
$$

(i) Check that T is continuous and compute its operator norm $\|T\|$.
(ii) Prove that T has no eigenvalues.
(iii) Show that T has spectrum $\sigma(T)=[0,\|T\|]$.

12. Solutions

Solution of 12.1: For every $n \in \mathbb{N}$ and $x \in[0,1]$, the assumptions $f_{n}^{\prime}(0)=f_{n}(0)$ and $\left|f_{n}^{\prime}(t)\right| \leq C$ for all $t \in[0,1]$ imply

$$
\left|f_{n}(x)\right| \leq\left|f_{n}(0)\right|+\int_{0}^{x}\left|f_{n}^{\prime}(t)\right| \mathrm{d} t=\left|f_{n}^{\prime}(0)\right|+\int_{0}^{x}\left|f_{n}^{\prime}(t)\right| \mathrm{d} t \leq C+x C \leq 2 C
$$

Consequently, $\left(f_{n}\right)_{n \in \mathbb{N}}$ is uniformly bounded in $C^{0}([0,1])$. Moreover, it is equicontinuous, since

$$
\left|f_{n}(x)-f_{n}(y)\right|=\left|\int_{y}^{x} f_{n}^{\prime}(t) \mathrm{d} t\right| \leq C|x-y|
$$

hence $\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon$ whenever $|x-y|<\delta:=\frac{\varepsilon}{2 C}$. By the Arzelà-Ascoli theorem, $\left(f_{n}\right)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence.

Solution of 12.2:

(i) If $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is uniformly bounded in the Hölder norm, then it is uniformly bounded in the sup-norm, since Ω is bounded. Moreover there exists some $C>0$ so that for every $x, y \in \Omega$ and every $n \in \mathbb{N}$ there holds

$$
\left|\varphi_{n}(x)-\varphi_{n}(x)\right| \leq C|x-y|^{\alpha},
$$

which implies that the sequence is uniformly continuous. The conclusion then follows by Arzelà-Ascoli's theorem.
(ii) For every $f \in X$, and every $x, y \in(0,1)$ (w.l.o.g. $x \leq y$), by Hölder's inequality we have that

$$
|F(f)(x)-F(f)(y)| \leq \int_{x}^{y}|f(u)| \mathrm{d} u \leq\|f\|_{L^{2}((0,1))}|x-y|^{1 / 2}
$$

and this yields at once that $F(f) \in C^{0,1 / 2}((0,1), \mathbb{R})$.
(iii) To prove that F is compact, it suffices to show that, if $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a bounded sequence in X, then up to subsequence $\left(F\left(f_{n}\right)\right)_{n \in \mathbb{N}}$ converges strongly in $C^{0}((0,1), \mathbb{R})$ (see Problem 11.4 (i). Similarly as above, for every $n \in \mathbb{N}$ we have

$$
\left|F\left(f_{n}\right)(x)-F\left(f_{n}\right)(y)\right| \leq C\left\|f_{n}\right\|_{L^{2}((0,1))}|x-y|^{1 / 2}
$$

and, since the norm $\left\|f_{n}\right\|_{L^{2}((0,1))}$ is uniformly bounded, it follows that the Hölder 1/2-norm of $\left(F\left(f_{n}\right)\right)_{n \in \mathbb{N}}$ is uniformly bounded. As a result, thanks to (i), $\left(F\left(f_{n}\right)\right)_{n \in \mathbb{N}}$ converges strongly in $C^{0}((0,1), \mathbb{R})$, up to subsequence.

Solution of 12.3:

(i) From

$$
\|T x\|_{\ell_{\mathbb{C}}^{2}}^{2}=\sum_{n \in \mathbb{N}}\left|a_{n} x_{n}\right|^{2} \leq\|a\|_{\ell \in \mathbb{C}}^{2}\|x\|_{\ell_{\mathbb{C}}}^{2},
$$

we obtain $\|T\| \leq\|a\|_{\ell_{\mathbb{C}}}$. Given any $k \in \mathbb{N}$, let $e_{k}=(0, \ldots, 0,1,0, \ldots) \in \ell_{\mathbb{C}}^{2}$, where the 1 is at k-th position. Then, $\left\|T e_{k}\right\|_{\ell_{\mathbb{C}}^{2}}=\left|a_{k}\right|=\left|a_{k}\right|\left\|e_{k}\right\|_{\ell_{\mathbb{C}}^{2}}$ implies $\|T\| \geq\left|a_{k}\right|$. Since $k \in \mathbb{N}$ is arbitrary, $\|T\| \geq\|a\|_{\ell c}^{\infty}$ follows. To conclude, $\|T\|=\|a\|_{\ell_{\mathrm{C}}^{\infty}}$.
(ii) The adjoint operator T^{*} of T is given by $\left(T^{*} y\right)_{n}=\overline{a_{n}} y_{n}$ for $y \in \ell_{\mathbb{C}}^{2}$ because

$$
\forall x, y \in \ell_{\mathbb{C}}^{2} \quad\left(x, T^{*} y\right)_{\ell_{\mathbb{C}}^{2}}=(T x, y)_{\ell_{\mathbb{C}}^{2}}=\sum_{n \in \mathbb{N}} a_{n} x_{n} \overline{y_{n}}=\sum_{n \in \mathbb{N}} x_{n} \overline{\overline{a_{n}} y_{n}} .
$$

and we conclude $T=T^{*} \Leftrightarrow a_{n}=\overline{a_{n}} \quad \forall n \in \mathbb{N}$.
(iii) Let $e_{k} \in \ell_{\mathbb{C}}^{2}$ be as in (i). Being an orthonormal system of the Hilbert space $\ell_{\mathbb{C}}^{2}$, the sequence $\left(e_{n}\right)_{n \in \mathbb{N}}$ converges weakly to zero. If T is a compact operator, then $\left|a_{n}\right|=$ $\left\|T e_{n}\right\|_{\ell_{\mathbb{C}}^{2}} \rightarrow 0$ as $n \rightarrow \infty$.
Conversely, let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} such that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and let $T \in L\left(\ell_{\mathbb{C}}^{2}, \ell_{\mathbb{C}}^{2}\right)$ be the corresponding multiplication operator. Let $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ be any bounded sequence in $\ell_{\mathbb{C}}^{2}$ and $C>0$ a constant such that $\left\|x^{(k)}\right\|_{\ell_{\mathbb{C}}^{2}} \leq C$ for every $k \in \mathbb{N}$. Since $\ell_{\mathbb{C}}^{2}$ is reflexive, there exists $x \in \ell_{\mathbb{C}}^{2}$ and an unbounded subset $\Lambda \subset \mathbb{N}$ such that $x^{(k)} \xrightarrow{\mathbf{w}} x$ as $\Lambda \ni k \rightarrow \infty$. In particular,

$$
\begin{equation*}
\lim _{\Lambda \ni k \rightarrow \infty} x_{n}^{(k)}=\lim _{\Lambda \ni k \rightarrow \infty}\left(e_{n}, x^{(k)}\right)_{\ell_{\mathbb{C}}^{2}}=\left(e_{n}, x\right)_{\ell_{\mathbb{C}}^{2}}=x_{n} . \tag{*}
\end{equation*}
$$

Moreover, since $B_{C}\left(0 ; \ell_{\mathbb{C}}^{2}\right)$ is weakly closed, $\|x\|_{\ell_{\mathbb{C}}^{2}} \leq C$. Let $\varepsilon>0$. By assumption, there exists $N \in \mathbb{N}$ such that $\left|a_{n}\right|^{2}<\frac{\varepsilon}{4 C}$ for all $n \geq N$. Assuming $a \not \equiv 0$, let $K \in \Lambda$ such that for all $\Lambda \ni k \geq K$ and each of the finitely many $n \in\{1, \ldots, N\}$ there holds

$$
\left|x_{n}^{(k)}-x_{n}\right|^{2}<\frac{\varepsilon}{2 N\|a\|_{\ell_{C}^{\infty}}^{2}} .
$$

This is possible due to $(*)$. Then, for all $\Lambda \ni k \geq K$

$$
\begin{aligned}
\left\|T x^{(k)}-T x\right\|_{\ell_{\mathbb{C}}^{2}}^{2} & =\sum_{n=1}^{N}\left|a_{n}\left(x_{n}^{(k)}-x_{n}\right)\right|^{2}+\sum_{n=N+1}^{\infty}\left|a_{n}\left(x_{n}^{(k)}-x_{n}\right)\right|^{2} \\
& <\sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2} \varepsilon}{2 N\|a\|_{\ell_{\mathbb{C}}^{\infty}}^{2}}+\frac{\varepsilon}{4 C} \sum_{n \in \mathbb{N}}\left(\left|x_{n}^{(k)}\right|^{2}+\left|x_{n}\right|^{2}\right) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Thus, $\left(T x^{(k)}\right)_{k \in \Lambda}$ converges in $\ell_{\mathbb{C}}^{2}$, which proves that T is a compact operator.

Solution of 12.4:

(i) For every $x \in[a, b]$ and any $f \in C^{0}([a, b])$ there holds

$$
\begin{aligned}
& \int_{a}^{x} \frac{1}{\sqrt{x-t}} \mathrm{~d} t
\end{aligned}=[-2 \sqrt{x-t}]_{t=a}^{x}=2 \sqrt{x-a}, ~=~(T f)(x) \left\lvert\, \leq \int_{a}^{x} \frac{|f(t)|}{\sqrt{x-t}} \mathrm{~d} t \leq 2 \sqrt{x-a}\|f\|_{C^{0}([a, b])} .\right.
$$

Therefore, $\|T f\|_{C^{0}([a, b])} \leq 2 \sqrt{b-a}\|f\|_{C^{0}([a, b])}$ and $\|T\| \leq 2 \sqrt{b-a}$. In fact, choosing a constant function f, we obtain $\|T\|=2 \sqrt{b-a}$.
(ii) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in $C^{0}([a, b])$ and let $C>0$ be a constant such that $\left\|f_{n}\right\|_{C^{0}([a, b])} \leq C$ for all $n \in \mathbb{N}$. Then the sequence $\left(T f_{n}\right)_{n \in \mathbb{N}}$ is also (uniformly) bounded in $C^{0}([a, b])$ since

$$
\left\|T f_{n}\right\|_{C^{0}([a, b])} \leq\|T\|\left\|f_{n}\right\|_{C^{0}([a, b])} \leq 2 C \sqrt{b-a}
$$

by part (i). To show equicontinuity, we consider $a \leq x \leq y \leq b$ and estimate

$$
\begin{aligned}
\left|\left(T f_{n}\right)(y)-\left(T f_{n}\right)(x)\right| & =\left|\int_{a}^{y} \frac{f_{n}(t)}{\sqrt{y-t}} \mathrm{~d} t-\int_{a}^{x} \frac{f_{n}(t)}{\sqrt{x-t}} \mathrm{~d} t\right| \\
& =\left|\int_{x}^{y} \frac{f_{n}(t)}{\sqrt{y-t}} \mathrm{~d} t-\int_{a}^{x}\left(\frac{f_{n}(t)}{\sqrt{x-t}}-\frac{f_{n}(t)}{\sqrt{y-t}}\right) \mathrm{d} t\right| \\
& \leq \int_{x}^{y} \frac{\left|f_{n}(t)\right|}{\sqrt{y-t}} \mathrm{~d} t+\int_{a}^{x}\left|f_{n}(t)\right|\left(\frac{1}{\sqrt{x-t}}-\frac{1}{\sqrt{y-t}}\right) \mathrm{d} t \\
& \leq C\left(\int_{x}^{y} \frac{1}{\sqrt{y-t}} \mathrm{~d} t+\int_{a}^{x}\left(\frac{1}{\sqrt{x-t}}-\frac{1}{\sqrt{y-t}}\right) \mathrm{d} t\right) \\
& \leq 2 C(\sqrt{y-x}+\sqrt{x-a}-\sqrt{y-a}+\sqrt{y-x}) \\
& \leq 4 C \sqrt{y-x} .
\end{aligned}
$$

Hence, $\left|\left(T f_{n}\right)(y)-\left(T f_{n}\right)(x)\right|<\varepsilon$ whenever $|y-x|<\delta:=\frac{\varepsilon^{2}}{16 C^{2}}$. By the Arzelà-Ascoli theorem, $\left(T f_{n}\right)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence, which proves that T is a compact operator.
(iii) In part (i) we computed the operator norm $\|T\|=2 \sqrt{b-a}$. By definition,

$$
r_{T}:=\inf _{n \in \mathbb{N}}\left\|T^{n}\right\|^{\frac{1}{n}} \leq\|T\|=2 \sqrt{b-a} .
$$

Solution of 12.5:

(i) For every $f \in L^{2}([a, b] ; \mathbb{C})$, there holds

$$
\begin{aligned}
\|T f\|_{L^{2}([a, b ; ; \mathbb{C})}^{2}=\int_{a}^{b} x^{4}|f(x)|^{2} \mathrm{~d} x & \leq\left(\max _{x \in[a, b]} x^{4}\right)\|f\|_{L^{2}([a, b ; \mathbb{C})}^{2} \\
\Longrightarrow\|T\| & \leq \max \left\{a^{2}, b^{2}\right\}
\end{aligned}
$$

Suppose $b>0$. Let $0<\varepsilon<b$ and let $f_{\varepsilon}=\varepsilon^{-\frac{1}{2}} \chi_{[b-\varepsilon, b]}$, where $\chi_{[b-\varepsilon, b]}$ denotes the characteristic function of the interval $[b-\varepsilon, b] \subset[a, b]$. Then,

$$
\left\|T f_{\varepsilon}\right\|_{L^{2}([a, b] ; \mathbb{C})}^{2}=\int_{b-\varepsilon}^{b} x^{4}\left|f_{\varepsilon}(x)\right|^{2} \mathrm{~d} x \geq(b-\varepsilon)^{4}\left\|f_{\varepsilon}\right\|_{L^{2}([a, b] ; \mathbb{C})}^{2}
$$

Since $\varepsilon>0$ is arbitrary, we obtain $\|T\| \geq b^{2}$. Analogously, we can prove $\|T\| \geq a^{2}$ under the assumption $a<0$. As a result, we obtain $\|T\|=\max \left\{a^{2}, b^{2}\right\}$.
(ii) Suppose $\lambda \in \mathbb{C}$ and $f \in L^{2}([a, b] ; \mathbb{C})$ satisfy $T f=\lambda f$. For almost every $x \in[a, b]$,

$$
0=(\lambda f-T f)(x)=\left(\lambda-x^{2}\right) f(x)
$$

From $\lambda-x^{2} \neq 0$ for almost all $x \in[a, b]$ we conclude $f(x)=0$ for almost all $x \in[a, b]$. Hence, $f=0$ in $L^{2}([a, b] ; \mathbb{C})$ which proves that the operator T has no eigenvalues.
(iii) In part (ii) we proved that the operator $(\lambda-T)$ is injective for any $\lambda \in \mathbb{C}$. If the operator $(\lambda-T)$ is surjective for some $\lambda \in \mathbb{C}$, then there exists $f \in L^{2}([a, b] ; \mathbb{C})$ with $\lambda f-T f=1$. Then, for almost every $x \in[a, b]$,

$$
1=\lambda f(x)-T f(x)=\left(\lambda-x^{2}\right) f(x) \quad \Longrightarrow \quad f(x)=\frac{1}{\lambda-x^{2}}
$$

If $0 \leq \lambda \in \mathbb{R}$ and if $a \leq-\sqrt{\lambda}$ or $\sqrt{\lambda} \leq b$, then $f \notin L^{2}([a, b])$ in contradiction to our assumption because of the singularity at $x \in[a, b]$ satisfying $x^{2}=\lambda$. Therefore, $(\lambda-T)$ is not surjective for $\lambda \in\left[0, \max \left\{a^{2}, b^{2}\right\}\right]$ which shows $[0,\|T\|] \subset \sigma(T)$.

If $\lambda \in \mathbb{C} \backslash[0,\|T\|]$, then the function $f:[a, b] \rightarrow \mathbb{C}$ with $f(x)=\frac{1}{\lambda-x^{2}}$ is bounded. Therefore, the map $R_{\lambda}: L^{2}([a, b] ; \mathbb{C}) \rightarrow L^{2}([a, b] ; \mathbb{C})$ given by $g \mapsto g f$ is continuous. Moreover, by construction $(\lambda-T)(g f)=g$ for any $g \in L^{2}([a, b] ; \mathbb{C})$, which proves $(\lambda-T)^{-1}=R_{\lambda}$. To conclude, $\sigma(T)=[0,\|T\|]$.

