13.1. Definitions of resolvent set \mathbb{G}. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space over \mathbb{C} and let $A: D_{A} \subset X \rightarrow X$ be a linear operator. Prove that if A has closed graph, then the following sets coincide.

$$
\begin{array}{r}
\rho(A)=\left\{\lambda \in \mathbb{C} \mid(\lambda-A): D_{A} \rightarrow X \text { is bijective, } \exists(\lambda-A)^{-1} \in L(X, X)\right\}, \\
\tilde{\rho}(A)=\left\{\lambda \in \mathbb{C} \mid(\lambda-A): D_{A} \rightarrow X\right. \text { is injective with dense image, } \\
\left.\exists(\lambda-A)^{-1} \in L(Z(\lambda), X)\right\},
\end{array}
$$

where we have set $Z(\lambda):=(\lambda-A)\left(D_{A}\right)$, i.e., the image of $\lambda-A$, and $(\lambda-A)^{-1} \in L(Z(\lambda), X)$ means that the (necessarily linear) set-theoretic inverse of $\lambda-A$ is bounded, in the usual sense that $\sup _{z \in Z_{\lambda},\|z\|_{X} \leq 1}\left\|(\lambda-A)^{-1}(z)\right\|<\infty$.

Remark. In the literature, the resolvent set is often defined to be $\tilde{\rho}(A)$ rather than $\rho(A)$. Since as soon as $\rho(A)$ is not empty A has closed graph, this problem shows that the two perspectives are in fact equivalent.

13.2. Unitary operators

Definition. Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}. An invertible linear operator $T \in L(H, H)$ is called unitary, if $T^{*}=T^{-1}$.
(i) Prove that $T \in L(H, H)$ is unitary if and only if T is a bijective isometry.
(ii) Prove that if $T \in L(H, H)$ is unitary, then its spectrum lies on the unit circle:

$$
\sigma(T) \subset \mathbb{S}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}
$$

13.3. Integral operators revisited . Let $\Omega \subset \mathbb{R}^{m}$ be a bounded subset. Given $k \in L^{2}(\Omega \times \Omega)$ such that $k(x, y)=k(y, x)$ for almost every $(x, y) \in \Omega \times \Omega$, consider the operator $K: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ defined by

$$
(K f)(x)=\int_{\Omega} k(x, y) f(y) \mathrm{d} y
$$

and the operator

$$
\begin{aligned}
A: L^{2}(\Omega) & \rightarrow L^{2}(\Omega) \\
f & \mapsto f-K f .
\end{aligned}
$$

Prove that injectivity of A and surjectivity of A are equivalent.
13.4. Resolvents and spectral distance θ. Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}.
(i) Let $A \in L(H, H)$ be a self-adjoint operator and let $\lambda \in \rho(A)$ be an element in its resolvent set. Show that the resolvent $R_{\lambda}:=(\lambda-A)^{-1}$ is a normal operator, i.e.,

$$
R_{\lambda} R_{\lambda}^{*}=R_{\lambda}^{*} R_{\lambda} .
$$

(ii) Let $A, B \in L(H, H)$ be self-adjoint operators. The Hausdorff distance of their spectra $\sigma(A), \sigma(B) \subset \mathbb{C}$ is defined to be

$$
d(\sigma(A), \sigma(B)):=\max \left\{\sup _{\alpha \in \sigma(A)}\left(\inf _{\beta \in \sigma(B)}|\alpha-\beta|\right), \sup _{\beta \in \sigma(B)}\left(\inf _{\alpha \in \sigma(A)}|\alpha-\beta|\right)\right\} .
$$

Prove the estimate

$$
d(\sigma(A), \sigma(B)) \leq\|A-B\|_{L(H, H)} .
$$

Remark. The Hausdorff distance d is in fact a distance on compact subsets of \mathbb{C}. In particular, it restricts to an actual distance function on the spectra of bounded linear operators.
13.5. Compact operator on space decomposition \square. Let H be a Hilbert space over \mathbb{R} and let $A: H \rightarrow H$ be linear, compact and self-adjoint.
(i) State the spectral theorem for A.

Now, suppose the existence of two complementary and mutually orthogonal subspaces $H^{\prime}, H^{\prime \prime} \subset H$ that are A-invariant, meaning that

$$
H=H^{\prime} \oplus^{\perp} H^{\prime \prime}, \quad A\left(H^{\prime}\right) \subset H^{\prime}, \quad A\left(H^{\prime \prime}\right) \subset H^{\prime \prime}
$$

(ii) Show that each of the restricted operators $A^{\prime}:=A_{\mid H^{\prime}}$ and $A^{\prime \prime}:=A_{\mid H^{\prime \prime}}$ is also compact and self-adjoint.

Assume now that A is nonnegative definite (i.e., $(A x, x) \geq 0$ for all $x \in H)$.
(iii) State the Courant-Fischer characterization of the eigenvalues of A.
(iv) Denoted by $\lambda_{1}, \lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}$ the first (namely, the largest) eigenvalue of $A, A^{\prime}, A^{\prime \prime}$ respectively, show that

$$
\lambda_{1}=\max \left\{\lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}\right\} .
$$

13.6. Heisenberg's uncertainty principle ${ }^{*}$. Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}. Let $D_{A}, D_{B} \subset H$ be dense subspaces and let $A: D_{A} \subset H \rightarrow H$ and $B: D_{B} \subset H \rightarrow H$ be symmetric linear operators. Under the necessary assumption that $A\left(D_{A} \cap D_{B}\right) \subset D_{B}$ and $B\left(D_{A} \cap D_{B}\right) \subset D_{A}$, the commutator

$$
\begin{aligned}
{[A, B]: D_{[A, B]} \subset H } & \rightarrow H \\
x & \mapsto A(B x)-B(A x)
\end{aligned}
$$

is a well-defined operator on $D_{[A, B]}:=D_{A} \cap D_{B}$.
(i) Prove the following inequality:

$$
\forall x \in D_{[A, B]}: \quad 2\|A x\|_{H}\|B x\|_{H} \geq\left|\langle x,[A, B] x\rangle_{H}\right|
$$

(ii) Given the symmetric operator $A: D_{A} \subset H \rightarrow H$ we define the standard deviation

$$
\varsigma(A, x):=\sqrt{\langle A x, A x\rangle_{H}-\langle x, A x\rangle_{H}^{2}}
$$

at each $x \in D_{A}$ with $\|x\|_{H}=1$. Verify $\varsigma(A, x) \in \mathbb{R}$ and prove the following inequality:

$$
\forall x \in D_{[A, B]},\|x\|_{H}=1: \quad 2 \varsigma(A, x) \varsigma(B, x) \geq\left|\langle x,[A, B] x\rangle_{H}\right| .
$$

Remark. The possible states of a quantum mechanical system are given by elements $x \in H$ with $\|x\|_{H}=1$. Each observable is given by a symmetric linear operator $A: D_{A} \subset H \rightarrow H$. If the system is in state $x \in D_{A}$, we measure the observable A with uncertainty $\varsigma(A, x)$.
(iii) Let $A: D_{A} \rightarrow H$ and $B: D_{B} \rightarrow H$ be as above. The pair of operators (A, B) is called Heisenberg pair if

$$
[A, B]=i \operatorname{id}_{D_{[A, B]}} .
$$

Under the assumption that B has finite operator norm and $D_{B}=H$, prove that if (A, B) is a Heisenberg pair, then $A: D_{A} \subset H \rightarrow H$ cannot have finite operator norm.
(iv) Consider the Hilbert space $\left(H,\langle\cdot, \cdot\rangle_{H}\right)=\left(L^{2}([0,1] ; \mathbb{C}),\langle\cdot, \cdot\rangle_{L^{2}}\right)$ and the subspace

$$
C_{0}^{1}([0,1] ; \mathbb{C}):=\left\{f \in L^{2}([0,1] ; \mathbb{C}) \mid f \in C^{1}([0,1] ; \mathbb{C}), f(0)=0=f(1)\right\}
$$

Here, we denote elements in the Hilbert space $L^{2}([0,1] ; \mathbb{C})$ by f and points in the interval $[0,1]$ by s. We understand $f \in C^{1}([0,1] ; \mathbb{C})$ if f has a representative in C^{1} and write $f^{\prime}=\frac{\mathrm{d}}{\mathrm{d} s} f$ in this case. Recall that in this sense, $C_{0}^{1}([0,1] ; \mathbb{C}) \subset L^{2}([0,1] ; \mathbb{C})$ is a dense subspace. The operators

$$
\begin{aligned}
P: C_{0}^{1}([0,1] ; \mathbb{C}) & \rightarrow L^{2}([0,1] ; \mathbb{C}), & Q: L^{2}([0,1] ; \mathbb{C}) & \rightarrow L^{2}([0,1] ; \mathbb{C}) \\
f(s) & \mapsto i f^{\prime}(s) & f(s) & \mapsto s f(s)
\end{aligned}
$$

correspond to the observables momentum and position. Check that P and Q are well-defined, symmetric operators. Check that $[P, Q]: C_{0}^{1}([0,1] ; \mathbb{C}) \rightarrow L^{2}([0,1] ; \mathbb{C})$ is well-defined.

Show that (P, Q) is a Heisenberg pair and conclude the uncertainty principle:

$$
\forall f \in C_{0}^{1}([0,1] ; \mathbb{C}),\|f\|_{L^{2}([0,1] ; \mathbb{C})}=1: \quad \varsigma(P, f) \varsigma(Q, f) \geq \frac{1}{2} .
$$

The more precisely the momentum of some particle is known, the less precisely its position can be known, and vice versa.

