1.1. Equivalent Norms

Definition. Let X be a set. A metric on X is a non-negative function $d: X \times X \rightarrow \mathbb{R}$ that satisfies for all $x, y, z \in X$

$$
d(x, y)=0 \Leftrightarrow x=y, \quad d(x, y)=d(y, x), \quad d(x, z) \leq d(x, y)+d(y, z) .
$$

We say that two metrics d and d^{\prime} on X are equivalent if

$$
\exists C>0 \quad \forall x_{1}, x_{2} \in X: \quad C^{-1} d^{\prime}\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, x_{2}\right) \leq C d^{\prime}\left(x_{1}, x_{2}\right) .
$$

Let X be a vector space over \mathbb{R}. A norm on X is a non-negative function $\|\cdot\|: X \rightarrow \mathbb{R}$ which satisfies for all $x, y \in X$ and $\lambda \in \mathbb{R}$

$$
\|x\|=0 \Leftrightarrow x=0, \quad\|\lambda x\|=|\lambda|\|x\|, \quad\|x+y\| \leq\|x\|+\|y\| .
$$

We say that two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on X are equivalent if

$$
\exists C>0 \quad \forall x \in X: \quad C^{-1}\|x\|^{\prime} \leq\|x\| \leq C\|x\|^{\prime}
$$

Recall that a norm $\|\cdot\|$ induces a metric $d_{\|\cdot\|}$ by the formula $d_{\|\cdot\|}\left(x_{1}, x_{2}\right)=\left\|x_{1}-x_{2}\right\|$.
(i) Let X be a finite-dimensional vector space over \mathbb{R}. Show that all norms on X are equivalent.
(ii) Construct two metrics on \mathbb{R}^{2} that are not equivalent.
(iii) Construct a vector space X with two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ that are not equivalent. Hint. Prove that $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are not equivalent by exhibiting a sequence $\left(x_{n}\right) \subset X$ that converges for $\|\cdot\|$ but not for $\|\cdot\|^{\prime}$.
1.2. Intrinsic Characterisations . Let $^{*} V$ be a vector space over \mathbb{R}. Prove the following equivalences.
(i) The norm $\|\cdot\|$ is induced by a scalar product $\langle\cdot, \cdot\rangle$ (in the sense that there exists a scalar product $\langle\cdot, \cdot\rangle$ such that $\forall x \in V:\|x\|^{2}=\langle x, x\rangle$)
\Leftrightarrow the norm satisfies the parallelogram identity, i.e., $\forall x, y \in V$:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

Hint. If $\|\cdot\|$ satisfies the parallelogram identity, consider $\langle x, y\rangle:=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4} \| x-$ $y \|^{2}$. Prove $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$ first for $\lambda \in \mathbb{N}$, then for $\lambda \in \mathbb{Q}$ and finally for $\lambda \in \mathbb{R}$.
(ii) The metric $d(\cdot, \cdot)$ is induced by a norm $\|\cdot\|$ (in the sense that there exists a norm $\|\cdot\|$ such that $\forall x, y \in V: d(x, y)=\|x-y\|)$
\Leftrightarrow the metric is translation invariant and homogeneous, i.e., $\forall v, x, y \in V \forall \lambda \in \mathbb{R}$:

$$
\begin{aligned}
d(x+v, y+v) & =d(x, y), \\
d(\lambda x, \lambda y) & =|\lambda| d(x, y) .
\end{aligned}
$$

1.3. When $L^{p}(\mathbb{R})$ and $\ell^{p}(\mathbb{N})$ are Hilbert spaces \square_{\square}.

(i) Determine all values of $p \in[1, \infty]$ such that the Banach space $L^{p}(\mathbb{R})$ is actually Hilbertean (meaning that the norm $\|\cdot\|_{L^{p}}$ is induced by a scalar product).
(ii) Determine all values of $p \in[1, \infty]$ such that the Banach space $\ell^{p}(\mathbb{N})$ is actually Hilbertean (meaning that the norm $\|\cdot\|_{e^{p}}$ is induced by a scalar product).

It is advised not to forget the case $p=\infty$ in your discussion.

1.4. When a distance is induced by a norm \square.

(i) Let V be a vector space over \mathbb{R} and let $d: V \times V \rightarrow \mathbb{R}$ be a distance. State necessary and sufficient conditions for $d(\cdot, \cdot)$ to be induced by a norm $\|\cdot\|$, in the sense that

$$
d\left(v_{1}, v_{2}\right)=\left\|v_{1}-v_{2}\right\| \quad \forall v_{1}, v_{2} \in V .
$$

(Note that only a statement is requested, no proof.)
(ii) Consider the vector space $C([0, \infty) ; \mathbb{R})$ consisting of continuous functions defined on $[0, \infty) \subset \mathbb{R}$ and attaining real values, and the distance

$$
d\left(f_{1}, f_{2}\right)=\sum_{n=1}^{\infty} 2^{-n} \frac{\left\|f_{1}-f_{2}\right\|_{C^{0}([0, n])}}{1+\left\|f_{1}-f_{2}\right\|_{C^{0}([0, n])}}
$$

where $\|f\|_{C^{0}([0, n])}=\sup _{x \in[0, n]}|f(x)|$. Is d induced by a norm?

1.5. Infinite-dimensional vector spaces and separability

(i) Let $\emptyset \neq \Omega \subset \mathbb{R}^{n}$ be an open set. Show that $L^{p}(\Omega)$ is an infinite-dimensional vector space for all $1 \leq p \leq \infty$.
(ii) Let (X, \mathcal{A}, μ) be a measure space. Recall that if X is separable and the measure μ is finite (or, more generally, σ-finite) and if $1 \leq p<\infty$, then the space $L^{p}(X, \mathcal{A}, \mu)$ is separable. Roughly speaking, in the simple case when $X=(0,1), \mathcal{A}=$ Borel $-\sigma$ algebra and $\mu=\mathscr{L}^{1}$, this relies on the fact that any element in those spaces can be arbitrarily well approximated by a function of the form

$$
f=\sum_{i=1}^{k} q_{i} \chi_{B_{i}} \quad \text { for } k \in \mathbb{N}, B_{i}:=B_{r_{i}}\left(x_{i}\right), q_{i} \in \mathbb{Q}, x_{i} \in \mathbb{Q} \cap(0,1), 0<r_{i} \in \mathbb{Q} .
$$

Show that instead $\left(L^{\infty}((0,1)),\|\cdot\|_{L^{\infty}((0,1))}\right)$ is not separable, i.e., it does not contain a countable dense subset.
(Recall that $\|u\|_{L^{\infty}((0,1))}:=\inf \{K>0| | u(x) \mid \leq K$ for almost every $x \in(0,1)\}$.)

1. Solutions

Solution of 1.1:

(i) Let $n=\operatorname{dim} X$ and let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for X. Then every $x \in X$ is of the form $x=\sum_{k=1}^{n} x_{k} e_{k}$ with uniquely determined components $x_{1}, \ldots, x_{n} \in \mathbb{R}$. Recall that

$$
\|x\|_{\infty}:=\max _{k \in\{1, \ldots, n\}}\left|x_{k}\right|
$$

defines a norm on X. We show that any given norm $\|\cdot\|$ is equivalent to $\|\cdot\|_{\infty}$ and therefore any two norms are equivalent to each other. We have

$$
\begin{align*}
\|x\|=\left\|\sum_{k=1}^{n} x_{k} e_{k}\right\| & \leq \sum_{k=1}^{n}\left\|x_{k} e_{k}\right\|=\sum_{k=1}^{n}\left|x_{k}\right|\left\|e_{k}\right\| \\
& \leq n\left(\max _{k \in\{1, \ldots, n\}}\left|x_{k}\right|\right)\left(\max _{k \in\{1, \ldots, n\}}\left\|e_{k}\right\|\right)=n M\|x\|_{\infty} \tag{*}
\end{align*}
$$

where

$$
M:=\left(\max _{k \in\{1, \ldots, n\}}\left\|e_{k}\right\|\right)
$$

is a finite constant. The triangle inequality implies $|\|x\|-\|y\|| \leq\|x-y\|$. Combined with (*) we have

$$
|\|x\|-\|y\|| \leq\|x-y\| \leq n M\|x-y\|_{\infty}
$$

for every $x, y \in X$. This implies that $\|\cdot\|:\left(X,\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}$ is a continuous map. We restrict this map to $K:=\left\{x \in X:\|x\|_{\infty}=1\right\}$. Note that K is a closed and bounded subset of $\left(X,\|\cdot\|_{\infty}\right)$. Moreover recall that $\|\cdot\|_{\infty}$ is equivalent to the Euclidean norm $\|\cdot\|_{2}$, which is defined as $\|x\|_{2}:=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2}$ for every $x=\sum_{k=1}^{n} x_{k} e_{k} \in X$ (in particular $\|x\|_{\infty} \leq\|x\|_{2} \leq n\|x\|_{\infty}$). Hence, by Heine-Borel theorem, K is compact. Therefore, the function $\|\cdot\|$ attains minimum and maximum on K, i.e., there exists $x_{1}, x_{2} \in X$ such that

$$
m_{1}:=\min _{x \in K}\|x\|=\left\|x_{1}\right\|, \quad \quad m_{2}:=\max _{x \in K}\|x\|=\left\|x_{2}\right\| .
$$

Since $\left\|x_{1}\right\|_{\infty}=1$ we have $x_{1} \neq 0$ and $m_{1}>0$. Then, for an arbitrary $x \in X \backslash\{0\}$ we have

$$
\frac{x}{\|x\|_{\infty}} \in K \quad \Longrightarrow \quad 0<m_{1} \leq\left\|\frac{x}{\|x\|_{\infty}}\right\| \leq m_{2}<\infty
$$

Multiplication with $\|x\|_{\infty}$ implies

$$
0<m_{1}\|x\|_{\infty} \leq\|x\| \leq m_{2}\|x\|_{\infty}<\infty .
$$

Any other given norm $\|\cdot\|^{\prime}$ satisfies analogously

$$
0<m_{1}^{\prime}\|x\|_{\infty} \leq\|x\|^{\prime} \leq m_{2}^{\prime}\|x\|_{\infty}<\infty .
$$

Thus, the combination of the two last inequalities proves the equivalence of $\|\cdot\|$ and $\|\cdot\|^{\prime}$.
(ii) Let d be the metric on \mathbb{R}^{2} induced by the Euclidean norm. We define d^{\prime} on \mathbb{R}^{2} by

$$
d^{\prime}(x, y)= \begin{cases}0, & \text { if } x=y \\ 1, & \text { if } x \neq y\end{cases}
$$

Let z be a point on the Euclidean unit circle $\mathbb{S}^{1} \subset \mathbb{R}^{2}$ let $z_{n}=\frac{1}{n} z$. Then, $d\left(0, z_{n}\right)=\frac{1}{n}$ and $d^{\prime}\left(0, z_{n}\right)=1$. Since an inequality of the form $1 \leq C \frac{1}{n}$ cannot hold for every $n \in \mathbb{N}$ if C is finite, d and d^{\prime} are not equivalent.
(iii) Let $X=C^{1}([0,1])$. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be the two norms on X given by

$$
\|u\|:=\|u\|_{C^{0}}=\sup _{x \in[0,1]}|u(x)|, \quad\|u\|^{\prime}:=\max \left\{\sup _{x \in[0,1]}|u(x)|, \sup _{x \in[0,1]}\left|u^{\prime}(x)\right|\right\}
$$

For $n \in \mathbb{N}$ we consider

$$
\begin{aligned}
f_{n}:[0,1] & \rightarrow \mathbb{R} \\
x & \mapsto \frac{e^{-n x}}{n} .
\end{aligned}
$$

Then, $f_{n} \in C^{1}([0,1])$ for every $n \in \mathbb{N}$. Moreover, $\left\|f_{n}\right\|=\frac{1}{n}$ and $\left\|f_{n}\right\|^{\prime}=1$. Since an inequality of the form $1 \leq C \frac{1}{n}$ cannot hold for every $n \in \mathbb{N}$ if C is finite, $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are not equivalent.

Solution of 1.2:

(i) If the norm $\|\cdot\|$ is induced by the scalar product $\langle\cdot, \cdot\rangle$, then the parallelogram identity holds:

$$
\begin{aligned}
& \|x+y\|^{2}+\|x-y\|^{2} \\
& =\langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle+\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
& =2\|x\|^{2}+2\|y\|^{2} .
\end{aligned}
$$

Conversely, we assume that $\|\cdot\|$ satisfies the parallelogram identity and claim that

$$
\langle x, y\rangle:=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2}
$$

defines a scalar product inducing $\|\cdot\|$.

- Symmetry. Since $\|x-y\|=\|(-1)(y-x)\|=\|y-x\|$ and since $x+y=y+x$, we have $\langle x, y\rangle=\langle y, x\rangle$ for all $x, y \in V$.
- Linearity. Let $x, y, z \in V$. We use the parallelogram identity in the following way.

$$
\|(x+z)+y\|^{2}+\|(x+z)-y\|^{2}=2\|x+z\|^{2}+2\|y\|^{2} .
$$

We rewrite the equation above to obtain

$$
\|x+y+z\|^{2}=2\|x+z\|^{2}+2\|y\|^{2}-\|x-y+z\|^{2}=: A
$$

and switch the roles of x and y to get

$$
\|x+y+z\|^{2}=2\|y+z\|^{2}+2\|x\|^{2}-\|y-x+z\|^{2}=: B .
$$

Therefore,

$$
\begin{align*}
& \|x+y+z\|^{2}=\frac{A}{2}+\frac{B}{2} \\
& =\|x+z\|^{2}+\|y\|^{2}+\|y+z\|^{2}+\|x\|^{2}-\frac{\|x-y+z\|^{2}+\|y-x+z\|^{2}}{2} \tag{1}
\end{align*}
$$

Analogously,

$$
\begin{align*}
& \|x+y-z\|^{2} \\
& =\|x-z\|^{2}+\|y\|^{2}+\|y-z\|^{2}+\|x\|^{2}-\frac{\|x-y-z\|^{2}+\|y-x-z\|^{2}}{2} . \tag{2}
\end{align*}
$$

Note that the last term of (1) agrees with the last term of (2). Hence, we have

$$
\begin{aligned}
\langle x+y, z\rangle & =\frac{1}{4}\|x+y+z\|^{2}-\frac{1}{4}\|x+y-z\|^{2} \\
& =\frac{1}{4}\left(\|x+z\|^{2}+\|y+z\|^{2}-\|x-z\|^{2}-\|y-z\|^{2}\right)=\langle x, z\rangle+\langle y, z\rangle .
\end{aligned}
$$

Given $n \in \mathbb{N}$, by the additivity that we just proved, we have

$$
\langle n x, z\rangle=\left\langle\sum_{k=1}^{n} x, z\right\rangle=\sum_{k=1}^{n}\langle x, z\rangle=n\langle x, z\rangle
$$

Moreover, since $\langle 0, y\rangle=\frac{1}{4}\left(\|y\|^{2}-\|y\|^{2}\right)=0$,

$$
0=\langle 0, y\rangle=\langle x-x, y\rangle=\langle x, y\rangle+\langle-x, y\rangle \quad \Rightarrow\langle-x, y\rangle=-\langle x, y\rangle
$$

Consequently, $\langle m x, z\rangle=m\langle x, z\rangle$ for every $m \in \mathbb{Z}$. Now, given $m \in \mathbb{Z}$ and $n \in \mathbb{N}^{*}$, it holds

$$
\left\langle\frac{m}{n} x, z\right\rangle=\frac{n}{n} m\left\langle\frac{1}{n} x, z\right\rangle=\frac{m}{n}\left\langle\frac{n}{n} x, z\right\rangle=\frac{m}{n}\langle x, z\rangle
$$

which implies $\langle q x, z\rangle=q\langle x, z\rangle$ for every $q \in \mathbb{Q}$.
Let $\lambda \in \mathbb{R}$ and let $\left(q_{n}\right)_{n \in \mathbb{N}}$ be a sequence of rational numbers converging to λ for $n \rightarrow \infty$. Since the triangle inequality $\mid\|x\|-\|y\|\|\leq\| x-y \|$ implies that the norm is a continuous map, we have

$$
\begin{aligned}
\langle\lambda x, z\rangle & =\frac{1}{4}\|\lambda x+z\|^{2}-\frac{1}{4}\|\lambda x-z\|^{2}=\lim _{n \rightarrow \infty}\left(\frac{1}{4}\left\|q_{n} x+z\right\|^{2}-\frac{1}{4}\left\|q_{n} x-z\right\|^{2}\right) \\
& =\lim _{n \rightarrow \infty}\left\langle q_{n} x, z\right\rangle=\lim _{n \rightarrow \infty} q_{n}\langle x, z\rangle=\lambda\langle x, z\rangle .
\end{aligned}
$$

Linearity in the second argument follows by symmetry.

- Positive-definiteness. For all $x \in V$, we have

$$
\langle x, x\rangle=\frac{1}{4}\|x+x\|^{2}-\frac{1}{4}\|x-x\|^{2}=\frac{1}{4}\|2 x\|^{2}=\|x\|^{2} \geq 0 .
$$

This also shows that $\|\cdot\|$ is induced by $\langle\cdot, \cdot\rangle$. Moreover, $\langle x, x\rangle=0 \Leftrightarrow\|x\|=0 \Leftrightarrow x=0$.
(ii) If the metric d is induced by the norm $\|\cdot\|$, then

$$
\begin{aligned}
d(x+v, y+v) & =\|(x+v)-(y+v)\|=\|x-y\|=d(x, y), \\
d(\lambda x, \lambda y) & =\|\lambda x-\lambda y\|=\|\lambda(x-y)\|=|\lambda|\|x-y\| .
\end{aligned}
$$

Conversely, we assume that the metric d is translation invariant and homogeneous and claim that

$$
\|x\|:=d(x, 0)
$$

defines a norm inducing d. The function $\|\cdot\|$ is indeed a norm, because for all $x, y, z \in V$ and $\lambda \in \mathbb{R}$, we have

$$
\begin{aligned}
\|x\| & =0 \Leftrightarrow d(x, 0)=0 \Leftrightarrow x=0 \\
\|\lambda x\| & =d(\lambda x, 0)=d(\lambda x, \lambda 0)=|\lambda| d(x, 0)=|\lambda|\|x\| \\
\|x+y\| & =d(x+y, 0) \leq d(x+y, y)+d(y, 0)=d(x, 0)+d(y, 0)=\|x\|+\|y\|
\end{aligned}
$$

Moreover, $\|\cdot\|$ induces the metric d since for all $x, y \in V$

$$
\|x-y\|=d(x-y, 0)=d(x, y)
$$

Solution of 1.3: The parallelogram identity reads

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

and it is a necessary and sufficient condition for a Banach space to be Hilbertian, as seen in point (i) of Problem 1.2.
(i) For any $1 \leq p \leq \infty$, we can consider the characteristic functions $\chi_{[0,1]} \in L^{p}(\mathbb{R})$ and $\chi_{[1,2]} \in L^{p}(\mathbb{R})$. Then,

$$
\begin{aligned}
& 2\left\|\chi_{[0,1]}\right\|_{L^{p}(\mathbb{R})}^{2}=2\left\|\chi_{[1,2]}\right\|_{L^{p}(\mathbb{R})}^{2}=2 \\
&\left\|\chi_{[0,1]}+\chi_{[1,2]}\right\|_{L^{p}(\mathbb{R})}^{2}=\left\|\chi_{[0,1]}-\chi_{[1,2]}\right\|_{L^{p}(\mathbb{R})}^{2}= \begin{cases}1 & \text { if } p=\infty, \\
2^{\frac{2}{p}} & \text { else. }\end{cases}
\end{aligned}
$$

Hence, the parallelogram identity is violated for $p=\infty$, while for $1 \leq p<\infty$ it is fulfilled if and only if $2^{\frac{2}{p}}+2^{\frac{2}{p}}=2+2$, which is true if and only if $p=2$.

Hence $L^{p}(\mathbb{R})$ is Hilbertean if and only if $p=2$. In fact $L^{2}(\mathbb{R})$ is a Hilbert space with respect to the scalar product

$$
\langle f, g\rangle_{L^{2}(\mathbb{R})}=\int_{\mathbb{R}} f(x) g(x) \mathrm{d} x
$$

(ii) For any $1 \leq p \leq \infty$, we can consider the elements $x=(1,0,0, \ldots) \in \ell^{p}(\mathbb{N})$ and $y=(0,1,0, \ldots) \in \ell^{p}(\mathbb{N})$. Then,

$$
\begin{aligned}
2\|x\|_{\ell^{p}}^{2} & =2\|y\|_{\ell^{p}}^{2}=2 \\
\|x+y\|_{\ell^{p}}^{2} & =\|x-y\|_{\ell^{p}}^{2}= \begin{cases}1 & \text { if } p=\infty \\
2^{\frac{2}{p}} & \text { else. }\end{cases}
\end{aligned}
$$

Hence, as in the previous point, the parallelogram identity is violated for all $p \neq 2$. For $p=2$, the space $\ell^{2}(\mathbb{R})$ is indeed Hilbertean by virtue of the scalar product

$$
\langle x, y\rangle_{\ell^{2}}=\sum_{n \in \mathbb{N}} x_{n} y_{n}
$$

Solution of 1.4:

(i) The distance $d(\cdot, \cdot)$ on the vector space V is induced by a norm if and only if

$$
\begin{array}{rlrl}
\forall x, y, v \in V: & d(x+v, y+v) & =d(x, y), \\
& \forall x, y \in V \quad \forall \lambda \in \mathbb{R}: & d(\lambda x, \lambda y) & =|\lambda| d(x, y)
\end{array}
$$

(see (ii) in Problem 1.2).
(ii) Let $f \in C^{0}([0, \infty)) \backslash\{0\}$ be supported in $[0,1]$ and let $\lambda>0$. Then

$$
d(\lambda f, 0)=\left(\sum_{n=1}^{\infty} 2^{-n}\right) \frac{\lambda\|f\|_{C^{0}([0,1])}}{1+\lambda\|f\|_{C^{0}([0,1])}} \xrightarrow{\lambda \rightarrow \infty} 1
$$

which proves that d is not homogeneous and thus not induced by a norm.

Solution of 1.5:

(i) Suppose by contradiction that $L^{p}(\Omega)$ has finite dimension $d \in \mathbb{N}$. Since $\emptyset \neq \Omega \subset \mathbb{R}^{n}$ is open, there exist $d+1$ disjoint balls $B_{i}:=B_{r_{i}}\left(x_{i}\right) \subset \Omega$ for $i=1, \ldots, d+1$. Let $\varphi_{i}(x):=\chi_{B_{i}}$ be the characteristic function of B_{i}. Then, $\varphi_{1}, \ldots, \varphi_{d+1} \in L^{p}(\Omega)$ have disjoint supports. Moreover, since the subset $\left\{\varphi_{1}, \ldots, \varphi_{d+1}\right\}$ contains more than d elements, it must be linearly dependent. Let $\lambda_{1}, \ldots, \lambda_{d+1} \in \mathbb{R}$ be not all equal to 0 such that

$$
\sum_{i=1}^{d+1} \lambda_{i} \varphi_{i}=0
$$

However, if we multiply by φ_{j} for any $j \in\{1, \ldots, d+1\}$ and integrate over Ω, we get

$$
0=\int_{\Omega} \sum_{i=1}^{d+1} \lambda_{i} \varphi_{i} \varphi_{j} \mathrm{~d} \mu=\int_{\Omega} \lambda_{j} \varphi_{j}^{2} \mathrm{~d} \mu=\lambda_{j} \int_{\Omega} \varphi_{j}^{2} \mathrm{~d} \mu \quad \Rightarrow \lambda_{j}=0
$$

which contradicts the fact that $L^{p}(\Omega)$ is finite dimensional.
(ii) We define $I_{n}:=\left(\frac{1}{n+1}, \frac{1}{n}\right) \subset(0,1)$ for $n \in \mathbb{N}$ and consider the characteristic function $\chi_{I_{n}}$ of I_{n}, i.e.,

$$
\chi_{I_{n}}(x):= \begin{cases}1, & \text { if } x \in I_{n} \\ 0, & \text { if } x \in(0,1) \backslash I_{n} .\end{cases}
$$

Given any subset $\emptyset \neq M \subset \mathbb{N}$ we define the function $f_{M} \in L^{\infty}((0,1))$ by

$$
f_{M}(x):=\sum_{n \in M} \chi_{I_{n}}(x)
$$

Since the intervals I_{n} are pairwise disjoint, open and non-empty, we have $\left\|f_{M}\right\|_{L^{\infty}}=1$ for every $\emptyset \neq M \subset \mathbb{N}$. For the same reason,

$$
\left\|f_{M}-f_{M^{\prime}}\right\|_{L^{\infty}}=1
$$

if $M \neq M^{\prime}$. Therefore, the balls $B_{M}=\left\{g \in L^{\infty}((0,1)) \left\lvert\,\left\|g-f_{M}\right\|_{L^{\infty}}<\frac{1}{3}\right.\right\}$ are pairwise disjoint. If $S \subset L^{\infty}((0,1))$ is any dense subset, then $S \cap B_{M} \neq \emptyset$ for every $\emptyset \neq M \subset \mathbb{N}$. Thus, there is a surjective map $S \rightarrow\left\{B_{M} \mid \emptyset \neq M \subset \mathbb{N}\right\}$. Since there are uncountably many different subsets of \mathbb{N}, the set S must be uncountable as well. Therefore, $L^{\infty}((0,1))$ does not admit a countable dense subset.

