2.1. Statements of Baire

Definition. Let (M, d) be a metric space and consider a subset $A \subset M$. Then, \bar{A} denotes the closure, A° the interior and $A^{\complement}=M \backslash A$ the complement of A. We say that A is

- dense, if $\bar{A}=X$;
- nowhere dense, if $(\bar{A})^{\circ}=\emptyset$;
- meagre, if $A=\bigcup_{n \in \mathbb{N}} A_{n}$ is a countable union of nowhere dense sets A_{n};
- residual, if A^{\complement} is meagre.

Show that the following statements are equivalent.
(i) Every residual set $\Omega \subset M$ is dense in M.
(ii) The interior of every meagre set $A \subset M$ is empty.
(iii) The empty set is the only subset of M that is open and meagre.
(iv) Countable intersections of dense open sets are dense.

Hint. Show (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i). Use that subsets of meagre sets are meagre and recall that $A \subset M$ is dense $\Leftrightarrow \bar{A}=M \Leftrightarrow(M \backslash A)^{\circ}=\emptyset$.

Remark. Baire's theorem states that (i), (ii), (iii), (iv) are true if (M, d) is complete.
2.2. Quick warm-up: true or false? Decide whether the following statements are true or false. If true, think of a quick proof. If false, find a simple counterexample. (self-check: not to be handed in.)
(i) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of continuous functions $f_{n} \in C^{0}([0,1])$. If there exists $f:[0,1] \rightarrow \mathbb{R}$ such that $\forall x \in[0,1]: \lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ then $f \in C^{0}([0,1])$.
(ii) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of continuous functions $f_{n} \in C^{0}([0,1])$. If $\forall x \in[0,1]$ $\exists C(x): \sup _{n \in \mathbb{N}}\left|f_{n}(x)\right| \leq C(x)$ then $\sup _{n \in \mathbb{N}} \sup _{x \in[0,1]}\left|f_{n}(x)\right|<\infty$.
(iii) The function $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $d(x, y)=\min \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$, where $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$, is a distance.
(iv) There exists $A \subset \mathbb{R}$ such that both A and its complement A^{\complement} are dense in \mathbb{R}.
(v) $\left(C^{1}([-1,1]),\|\cdot\|_{C^{0}}\right)$ is a Banach space, i.e., a complete normed space.
(vi) The complement of a $2^{\text {nd }}$ category set is a $1^{\text {st }}$ category set.
(vii) A nowhere dense set is meagre.
(viii) A meagre set is nowhere dense.
(ix) Let U be the set of fattened rationals in \mathbb{R}, namely

$$
U:=\bigcap_{j=1}^{\infty} U_{j}, \quad U_{j}:=\bigcup_{k=1}^{\infty}\left(q_{k}-2^{-(j+k+1)}, q_{k}+2^{-(j+k+1)}\right),
$$

where $\left(q_{n}\right)_{n \in \mathbb{N}}$ is a counting of \mathbb{Q}. Then $U=\mathbb{Q}$.
2.3. An application of Baire ${ }^{*}$. Let $f \in C^{0}([0, \infty))$ be a continuous function satisfying

$$
\forall t \in[0, \infty): \lim _{n \rightarrow \infty} f(n t)=0
$$

Prove that $\lim _{t \rightarrow \infty} f(t)=0$.
Hint. Apply the Baire Lemma as in the proof of the uniform boundedness principle.

2.4. Compactly supported sequences and their ℓ^{∞}-completion

Definition. We denote the space of compactly supported sequences by

$$
c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \geq N: x_{n}=0\right\}
$$

and the space of sequences converging to zero by

$$
c_{0}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \lim _{n \rightarrow \infty} x_{n}=0\right\} .
$$

(i) Show that $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$ is not complete. What is the completion of this space?
(ii) Prove the strict inclusion

$$
\bigcup_{p \geq 1} \ell^{p} \subsetneq c_{0} .
$$

2.5. (Dis)-continuity of functions arising as pointwise limits

Let (X, d) be a metric space, and let $\left(f_{n}\right)$ be a sequence of continuous, real-valued functions $f_{n}: X \rightarrow \mathbb{R}$ assumed to be pointwise converging to a limit function f, i.e., we set

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x) .
$$

In this problem we wish to study the set of continuity points of the function f, namely the structure of the set $C:=\{x \in X \mid f$ is continuous at $x\}$.
(i) Give an example of a space X and a sequence of continuous functions whose pointwise limit (although well-defined) is not continuous.
(ii) Assuming that (X, d) is complete, prove that C is residual and dense.

Hint. For every $\varepsilon>0$, define $D_{\varepsilon}:=\left\{x \in X \mid \operatorname{osc}_{x}(f) \geq \varepsilon\right\}$, where $\operatorname{osc}_{x}(f):=$ $\lim _{r \rightarrow 0}\left\{\sup _{y \in B_{r}(x)} f(y)-\inf _{y \in B_{r}(x)} f(y)\right\}$ is the oscillation of f at x, and set $D:=$ $\bigcup_{j \geq 1} D_{1 / j}$. Show that: (a) D is the set of discontinuity points of f, i.e. $D^{\complement}=C$, and (b) $D_{\varepsilon}^{\complement}$ is open and dense for all $\varepsilon>0$. Hence conclude by applying Baire's Lemma.
(iii) Show that the Dirichlet function $f=\chi_{\mathbb{Q}}$ is not the pointwise limit of any sequence of continuous functions on the real line.

2. Solutions

Solution of 2.1: For a metric space (M, d) we shall prove equivalence of (i), (ii), (iii) and (iv).
"(i) \Rightarrow (ii)" Let $A \subset M$ be a meagre set. Then, A^{\complement} is residual and dense in M by (i). Hence, $\emptyset=\left(M \backslash A^{\complement}\right)^{\circ}=A^{\circ}$.
"(ii) \Rightarrow (iii)" Let $A \subset M$ be open and meagre. Then $A=A^{\circ}$ and $A^{\circ}=\emptyset$ by (ii).
"(iii) \Rightarrow (iv)" Let $A=\bigcap_{n \in \mathbb{N}} A_{n}$ be a countable intersection of dense open sets $A_{n} \subset M$. Since A_{n} is dense, $\left(A_{n}^{\complement}\right)^{\circ}=\emptyset$. Since A_{n} is open, A_{n}^{\complement} is closed. Thus, $\left(\overline{A_{n}^{\complement}}\right)^{\circ}=\left(A_{n}^{\complement}\right)^{\circ}=\emptyset$, which means that A_{n}^{\complement} is nowhere dense. Thus, $A^{\complement}=\bigcup_{n \in \mathbb{N}} A_{n}^{\complement}$ is meagre. As a result, $\left(A^{\complement}\right)^{\circ}$ is open and meagre, hence empty by (iii). This implies that A is dense in M.
"(iv) $\Rightarrow(\mathrm{i})$ " Let $\Omega \subset M$ be a residual set. Since $A=\Omega^{\complement}$ is meagre, $A=\cup_{n \in \mathbb{N}} A_{n}$ for nowhere dense sets A_{n}. Then $\emptyset=\left(\overline{A_{n}}\right)^{\circ}=\left(M \backslash\left(\overline{A_{n}}\right)^{\complement}\right)^{\circ}$ which implies that $\left(\overline{A_{n}}\right)^{\complement}$ is dense in M. Moreover, $\left(\overline{A_{n}}\right)^{\complement}$ is open since $\overline{A_{n}}$ is closed. Then, (iv) implies density of

$$
\Omega=A^{\complement}=\bigcap_{n \in \mathbb{N}} A_{n}^{\complement} \supseteq \bigcap_{n \in \mathbb{N}}\left(\overline{A_{n}}\right)^{\complement} .
$$

Solution of 2.2:

(i) False. Consider $f_{n}(x)=x^{n}$. Then $f_{n} \in C^{0}([0,1])$ but

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x):= \begin{cases}0, & \text { if } 0 \leq x<1, \\ 1, & \text { if } x=1 .\end{cases}
$$

(ii) False. Consider $f_{n}:[0,1] \rightarrow \mathbb{R}$ given by (see Figure 1)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } x \in\left[0, \frac{1}{n}\right] \\ 2 n-n^{2} x & \text { if } x \in\left(\frac{1}{n}, \frac{2}{n}\right] \\ 0 & \text { else }\end{cases}
$$

Then, $f_{n}(0)=0$ for all $n \in \mathbb{N}$ and $\forall x \in(0,1] \forall n \geq \frac{2}{x}: f_{n}(x)=0$. Being convergent to zero, $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is bounded for all $x \in[0,1]$. However, $\sup _{x \in[0,1]}\left|f_{n}(x)\right|=n$ is unbounded.
(iii) False. $d((0,0),(0, y))=\min \{0,|y|\}=0$ for all $y \in \mathbb{R}$.
(iv) True. The rationals $\mathbb{Q} \subset \mathbb{R}$ and the irrationals $\mathbb{R} \backslash \mathbb{Q}$ are both dense in \mathbb{R}.
(v) False. Consider $h_{n}(x)=\sqrt{x^{2}+n^{-2}}$. Then $h_{n} \in C^{1}([-1,1])$ for every $n \in \mathbb{N}$. $\max _{x \in[-1,1]}\left|h_{n}(x)-h_{m}(x)\right|=\left|h_{n}(0)-h_{m}(0)\right|=\left|\frac{1}{n}-\frac{1}{m}\right|$ implies that $\left(h_{n}\right)_{n \in \mathbb{N}}$ is Cauchy w.r.t. $\|\cdot\|_{C^{0}}$ but the C^{0}-limit function $h(x)=|x|$ is not in $C^{1}([-1,1])$ (see Figure 1).
(vi) False. Both, $(-\infty, 0) \subset \mathbb{R}$ and $[0, \infty) \subset \mathbb{R}$ are $2^{\text {nd }}$ category sets.

Figure 1: The counterexamples for Problem 2.2, points (ii) and (v).
(vii) True. A nowhere dense A can be written as $A=\bigcup_{j=1}^{\infty} A_{j}$ with $A_{j}=A$ for all j and thus it is meagre by definition.
(viii) False. $\mathbb{Q}=\bigcup_{x \in \mathbb{Q}}\{x\} \subset \mathbb{R}$ is meagre. If \mathbb{Q} were nowhere dense, then the interior of the closure $\overline{\mathbb{Q}}$ would be empty but $\overline{\mathbb{Q}}=\mathbb{R}$.
(ix) False. One can use the Baire category to distinguish \mathbb{Q} from U since in fact $\operatorname{Cat}(\mathbb{Q})=$ 1, which follows straight from the definition, and $\operatorname{Cat}(U)=2$, which we prove in the following. The sets $U_{j} \subset \mathbb{R}$ are open as unions of open intervals and dense since $\mathbb{Q} \subset U_{j}$. Therefore, the complements U_{j}^{\complement} are closed with empty interior, i.e., nowhere dense. Hence, $U^{\complement}=\bigcup_{j=1}^{\infty} U_{j}^{\complement}$ is of $1^{\text {st }}$ category which implies $\operatorname{Cat}(U)=2$.

Solution of 2.3: Given $f \in C^{0}([0, \infty))$ satisfying $\forall t \in[0, \infty): \lim _{n \rightarrow \infty} f(n t)=0$ we define $f_{n}(t)=|f(n t)|$ for every $n \in \mathbb{N}$. Let $\varepsilon>0$ and let

$$
A_{N}:=\bigcap_{n=N}^{\infty}\left\{t \in[0, \infty) \mid f_{n}(t) \leq \varepsilon\right\} .
$$

Since f_{n} is continuous, the pre-image $f_{n}^{-1}([0, \varepsilon])=\left\{t \in[0, \infty) \mid f_{n}(t) \leq \varepsilon\right\}$ is closed for all $n \in \mathbb{N}$. Thus, the set A_{N} is closed as intersection of closed sets. By assumption,

$$
\forall t \in[0, \infty) \quad \exists N_{t} \in \mathbb{N} \quad \forall n \geq N_{t}: \quad f_{n}(t) \leq \varepsilon,
$$

which implies

$$
[0, \infty)=\bigcup_{N=1}^{\infty} A_{N}
$$

The Baire Lemma applied to the complete metric space $([0, \infty),|\cdot|)$ implies that there exists $N_{0} \in \mathbb{N}$ such that $A_{N_{0}}$ has non-empty interior, i.e., there exist $0 \leq a<b$ such that $(a, b) \subset A_{N_{0}}$. This implies

$$
\begin{aligned}
& \forall n \geq N_{0} \quad \forall t \in(a, b): \quad f_{n}(t) \leq \varepsilon \\
& \Leftrightarrow \quad \forall n \geq N_{0} \quad \forall t \in(n a, n b): \quad|f(t)| \leq \varepsilon .
\end{aligned}
$$

If $n>\frac{a}{b-a}$, then $(n+1) a<n b$. For the intervals $J_{a, b}(n):=(n a, n b)$ this means that $J_{a, b}(n) \cap J_{a, b}(n+1) \neq \emptyset$. Let $N_{1}>\max \left\{N_{0}, \frac{a}{b-a}\right\}$. Then, in particular,

$$
\forall t>N_{1} a: \quad|f(t)| \leq \varepsilon .
$$

This proves $\lim _{t \rightarrow \infty} f(t)=0$ since $\varepsilon>0$ was arbitrary.

Solution of 2.4:

(i) Let $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in c_{c}$ be given by

$$
x_{n}^{(k)}= \begin{cases}\frac{1}{n} & \text { for } n \leq k, \\ 0 & \text { for } n>k .\end{cases}
$$

Then $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$. However, its limit sequence $x^{(\infty)}$ given by $x_{n}^{(\infty)}=\frac{1}{n}$ for all $n \in \mathbb{N}$ is not in c_{c} but in $c_{0} \backslash c_{c}$. We claim that c_{0} is the completion of $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$.

Proof. It suffices to show $c_{0}=\overline{c_{c}}$, where the closure is taken in ℓ^{∞} because then, $\left(c_{0},\|\cdot\|_{\ell \infty}\right)$ is complete as closed subspace of the complete space $\left(\ell^{\infty},\|\cdot\|_{\ell \infty}\right)$.
" \subseteq " Let $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}$. Let $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ be a sequence of sequences $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}}$ in c_{c} given by

$$
x_{n}^{(k)}= \begin{cases}x_{n} & \text { for } n \leq k, \\ 0 & \text { for } n>k\end{cases}
$$

Let $\varepsilon>0$. By assumption, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{n}\right|<\varepsilon$ for every $n \geq N_{\varepsilon}$.

$$
\Rightarrow \quad \forall k \geq N_{\varepsilon}: \quad\left\|x^{(k)}-x\right\|_{\ell \infty}=\sup _{n>k}\left|0-x_{n}\right| \leq \varepsilon .
$$

We conclude that $x^{(k)} \rightarrow x$ in ℓ^{∞} as $k \rightarrow \infty$ and since $x \in c_{0}$ is arbitrary, $c_{0} \subseteq \overline{c_{c}}$.
" \supseteq " Let $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \overline{c_{c}}$. Then there exists a sequence $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ of sequences $x^{(k)}=$ $\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in c_{c}$ such that $x^{(k)} \rightarrow x$ in ℓ^{∞} as $k \rightarrow \infty$. Let $\varepsilon>0$. In particular, there exists $K \in \mathbb{N}$ such that

$$
\sup _{n \in \mathbb{N}}\left|x_{n}^{(K)}-x_{n}\right|=\left\|x^{(K)}-x\right\|_{\ell \infty}<\varepsilon
$$

Since $x^{(K)} \in c_{c}$ there exists $N_{0} \in \mathbb{N}$ such that $x_{n}^{(K)}=0$ for all $n \geq N_{0}$. This implies that

$$
\forall n \geq N_{0}: \quad\left|x_{n}\right| \leq \sup _{n \geq N_{0}}\left|0-x_{n}\right|<\varepsilon .
$$

We conclude that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ which means that $x \in c_{0}$.
(ii) If $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{p}$ for any $p \geq 1$, then necessarily $x_{n} \rightarrow 0$ for $n \rightarrow \infty$ by standard facts concerning summable series. Consequently,

$$
\bigcup_{p \geq 1} \ell^{p} \subset c_{0}
$$

The inclusion is strict, since $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in c_{0}$ given by

$$
y_{n}=\frac{1}{\log (n+1)}
$$

has the property that $y \notin \ell^{p}$ for any $p \geq 1$. Indeed, given any $p \geq 1$ there exists $N_{p} \in \mathbb{N}$ such that $\log (n+1) \leq n^{\frac{1}{p}}$ for every $n \geq N_{p}$ which allows the estimate

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\log (n+1)}\right)^{p} \geq \sum_{n=N_{p}}^{\infty}\left(\frac{1}{n^{\frac{1}{p}}}\right)^{p}=\sum_{n=N_{p}}^{\infty} \frac{1}{n}=\infty .
$$

Solution of 2.5:

(i) Consider as metric space the interval $[-1,1]$ with the Euclidean metric and define the continuous functions

$$
f_{n}(x):= \begin{cases}0, & \text { for } x \leq 0 \\ n x, & \text { for } 0<x<1 / n \\ 1, & \text { for } x \geq 1 / n\end{cases}
$$

Then it is very easy to check that the functions f_{n} pointwise converge to the function

$$
f(x):= \begin{cases}0, & \text { for } x \leq 0 \\ 1, & \text { for } x>0\end{cases}
$$

which is not continuous at 0 .
(ii) First observe that $x \in X$ is a continuity point for f if and only if

$$
\operatorname{osc}_{x}(f)=\lim _{r \rightarrow 0}\left\{\sup _{y \in B_{r}(x)} f(y)-\inf _{y \in B_{r}(x)} f(y)\right\}=0
$$

Hence we directly obtain that $D^{\complement}=C$. ${\text { Moreover } \operatorname{osc}_{x}(f) \text { is upper semicontinuous with }}^{\text {a }}$ respect to the variable x (see Lemma below), which implies that D_{ε} is closed for all $\varepsilon>0$ and thus $D_{\varepsilon}^{\complement}$ is open for all $\varepsilon>0$.

Lemma. Let (X, d) be a metric space and let $f: X \rightarrow \mathbb{R}$ be any function. Then the oscillation $\operatorname{osc}_{x}(f)$ is upper semicontinuous with respect to the variable x.

Proof. Let us first prove that, given any function $f: X \rightarrow \mathbb{R}$, the function $g(x):=$ $\lim _{r \rightarrow 0} \sup _{y \in B_{r}(x)} f(y)$ is upper semicontinuous. Fix any $x \in X$. By definition of g, for
every $\varepsilon>0$ there exists $\delta>0$ such that $f(y) \leq g(x)+\varepsilon$ for all $y \in B_{\delta}(x)$. Therefore, for every $y \in B_{\delta / 2}(x)$, we obtain that

$$
g(y)=\lim _{r \rightarrow 0} \sup _{z \in B_{r}(y)} f(z) \leq \sup _{z \in B_{\delta / 2}(y)} f(z) \leq g(x)+\varepsilon
$$

since $B_{\delta / 2}(y) \subset B_{\delta}(x)$. By taking the limit superior as $y \rightarrow x$, this implies that $\lim \sup _{y \rightarrow x} g(y) \leq g(x)+\varepsilon$ and, by arbitrariness of ε, this is sufficient to prove the upper semicontinuity of g.
Now observe that $\operatorname{osc}_{x}(f)$ is the sum of $\lim _{r \rightarrow 0} \sup _{y \in B_{r}(x)} f(y)$ and $-\lim _{r \rightarrow 0} \inf _{y \in B_{r}(x)} f(y)=$ $\lim _{r \rightarrow 0} \sup _{y \in B_{r}(x)}(-f(y))$, which are both upper semicontinuous thanks to the argument above; hence, the oscillation is upper semicontinuous as well.

We now want to prove that $D_{\varepsilon}^{\complement}$ is dense for all fixed $\varepsilon>0$. For every $k \in \mathbb{N}$, define $E_{k}:=\bigcap_{i, j \geq k}\left\{x \in X| | f_{j}(x)-f_{i}(x) \mid \leq \varepsilon / 4\right\}$. Note that E_{k} is closed for all $k \in \mathbb{N}$, since the functions f_{n} are continuous, and that $\cup_{k \in \mathbb{N}} E_{k}=X$, because the functions f_{n} pointwise converge to f. As a result, by Baire's Lemma, for every open set $U \subset X$ there exists $k \in \mathbb{N}$ with $E_{k}^{\circ} \cap U \neq \emptyset$. In particular there exists an open set $V \subset X$ such that $V \subset E_{k} \cap U$. Hence, by definition of E_{k}, we have $\left|f_{j}(x)-f_{i}(x)\right| \leq \varepsilon / 4$ for all $x \in V$ and for all $i, j \geq k$. Taking $i=k$ and the limit as $j \rightarrow \infty$, this implies that $\left|f(x)-f_{k}(x)\right| \leq \varepsilon / 4$ for every $x \in V$. Since f_{k} is continuous, up to taking V possibly smaller, we can also assume that $\left|f_{k}(x)-f_{k}(y)\right| \leq \varepsilon / 4$ for all $x, y \in V$. Therefore, for all $x, y \in V$, we obtain that

$$
|f(x)-f(y)| \leq\left|f(x)-f_{k}(x)\right|+\left|f_{k}(x)-f_{k}(y)\right|+\left|f_{k}(y)-f(y)\right| \leq \frac{3 \varepsilon}{4}
$$

which implies that $\operatorname{osc}_{x}(f) \leq 3 \varepsilon / 4<\varepsilon$ for all $x \in X$ and thus $V \subset D_{\varepsilon}^{\complement}$. In particular $D_{\varepsilon}^{\complement} \cap U \neq \emptyset$ for all open subset $U \subset X$, which means that $D_{\varepsilon}^{\complement}$ is dense, as desired.
As a result, we have that $C=\bigcap_{j \geq 1} D_{1 / j}^{\complement}$ is a countable intersection of open dense sets, hence it is residual and dense by Baire's Lemma.

Note. The expression $\lim _{r \rightarrow 0} \sup _{y \in B_{r}(x)} f(y)$ in the definition of oscillation differs from $\lim \sup _{y \rightarrow x} f(y)$, since in the definition of limit superior we do not take into account the value of the function f at the point x; namely $\limsup _{y \rightarrow x} f(y):=\lim _{r \rightarrow 0} \sup _{y \in B_{r}(x) \backslash\{x\}} f(y)$.
(iii) Since both the rational and the irrational numbers are dense in \mathbb{R}, we have that f is nowhere continuous. Hence f cannot be the pointwise limit of any sequence of continuous functions on the real line, because otherwise the set of continuity points of f would be dense by (ii).

